Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

200+6x^{2}-80x=0
Tangohia te 80x mai i ngā taha e rua.
6x^{2}-80x+200=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-\left(-80\right)±\sqrt{\left(-80\right)^{2}-4\times 6\times 200}}{2\times 6}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 6 mō a, -80 mō b, me 200 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-80\right)±\sqrt{6400-4\times 6\times 200}}{2\times 6}
Pūrua -80.
x=\frac{-\left(-80\right)±\sqrt{6400-24\times 200}}{2\times 6}
Whakareatia -4 ki te 6.
x=\frac{-\left(-80\right)±\sqrt{6400-4800}}{2\times 6}
Whakareatia -24 ki te 200.
x=\frac{-\left(-80\right)±\sqrt{1600}}{2\times 6}
Tāpiri 6400 ki te -4800.
x=\frac{-\left(-80\right)±40}{2\times 6}
Tuhia te pūtakerua o te 1600.
x=\frac{80±40}{2\times 6}
Ko te tauaro o -80 ko 80.
x=\frac{80±40}{12}
Whakareatia 2 ki te 6.
x=\frac{120}{12}
Nā, me whakaoti te whārite x=\frac{80±40}{12} ina he tāpiri te ±. Tāpiri 80 ki te 40.
x=10
Whakawehe 120 ki te 12.
x=\frac{40}{12}
Nā, me whakaoti te whārite x=\frac{80±40}{12} ina he tango te ±. Tango 40 mai i 80.
x=\frac{10}{3}
Whakahekea te hautanga \frac{40}{12} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 4.
x=10 x=\frac{10}{3}
Kua oti te whārite te whakatau.
200+6x^{2}-80x=0
Tangohia te 80x mai i ngā taha e rua.
6x^{2}-80x=-200
Tangohia te 200 mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
\frac{6x^{2}-80x}{6}=-\frac{200}{6}
Whakawehea ngā taha e rua ki te 6.
x^{2}+\left(-\frac{80}{6}\right)x=-\frac{200}{6}
Mā te whakawehe ki te 6 ka wetekia te whakareanga ki te 6.
x^{2}-\frac{40}{3}x=-\frac{200}{6}
Whakahekea te hautanga \frac{-80}{6} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
x^{2}-\frac{40}{3}x=-\frac{100}{3}
Whakahekea te hautanga \frac{-200}{6} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
x^{2}-\frac{40}{3}x+\left(-\frac{20}{3}\right)^{2}=-\frac{100}{3}+\left(-\frac{20}{3}\right)^{2}
Whakawehea te -\frac{40}{3}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{20}{3}. Nā, tāpiria te pūrua o te -\frac{20}{3} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-\frac{40}{3}x+\frac{400}{9}=-\frac{100}{3}+\frac{400}{9}
Pūruatia -\frac{20}{3} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}-\frac{40}{3}x+\frac{400}{9}=\frac{100}{9}
Tāpiri -\frac{100}{3} ki te \frac{400}{9} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(x-\frac{20}{3}\right)^{2}=\frac{100}{9}
Tauwehea x^{2}-\frac{40}{3}x+\frac{400}{9}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{20}{3}\right)^{2}}=\sqrt{\frac{100}{9}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-\frac{20}{3}=\frac{10}{3} x-\frac{20}{3}=-\frac{10}{3}
Whakarūnātia.
x=10 x=\frac{10}{3}
Me tāpiri \frac{20}{3} ki ngā taha e rua o te whārite.