Whakaoti mō x
x=\frac{\sqrt{543890}}{685}-1\approx 0.076626253
x=-\frac{\sqrt{543890}}{685}-1\approx -2.076626253
Graph
Tohaina
Kua tāruatia ki te papatopenga
\frac{20.55\left(x+1\right)^{2}}{20.55}=\frac{23.82}{20.55}
Whakawehea ngā taha e rua o te whārite ki te 20.55, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
\left(x+1\right)^{2}=\frac{23.82}{20.55}
Mā te whakawehe ki te 20.55 ka wetekia te whakareanga ki te 20.55.
\left(x+1\right)^{2}=\frac{794}{685}
Whakawehe 23.82 ki te 20.55 mā te whakarea 23.82 ki te tau huripoki o 20.55.
x+1=\frac{\sqrt{543890}}{685} x+1=-\frac{\sqrt{543890}}{685}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+1-1=\frac{\sqrt{543890}}{685}-1 x+1-1=-\frac{\sqrt{543890}}{685}-1
Me tango 1 mai i ngā taha e rua o te whārite.
x=\frac{\sqrt{543890}}{685}-1 x=-\frac{\sqrt{543890}}{685}-1
Mā te tango i te 1 i a ia ake anō ka toe ko te 0.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}