Tauwehe
10\left(x-2\right)\left(2x+1\right)
Aromātai
10\left(x-2\right)\left(2x+1\right)
Graph
Tohaina
Kua tāruatia ki te papatopenga
10\left(2x^{2}-3x-2\right)
Tauwehea te 10.
a+b=-3 ab=2\left(-2\right)=-4
Whakaarohia te 2x^{2}-3x-2. Whakatauwehea te kīanga mā te whakarōpū. Tuatahi, me tuhi anō te kīanga hei 2x^{2}+ax+bx-2. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
1,-4 2,-2
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōraro te a+b, he nui ake te uara pū o te tau tōraro i tō te tōrunga. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -4.
1-4=-3 2-2=0
Tātaihia te tapeke mō ia takirua.
a=-4 b=1
Ko te otinga te takirua ka hoatu i te tapeke -3.
\left(2x^{2}-4x\right)+\left(x-2\right)
Tuhia anō te 2x^{2}-3x-2 hei \left(2x^{2}-4x\right)+\left(x-2\right).
2x\left(x-2\right)+x-2
Whakatauwehea atu 2x i te 2x^{2}-4x.
\left(x-2\right)\left(2x+1\right)
Whakatauwehea atu te kīanga pātahi x-2 mā te whakamahi i te āhuatanga tātai tohatoha.
10\left(x-2\right)\left(2x+1\right)
Me tuhi anō te kīanga whakatauwehe katoa.
20x^{2}-30x-20=0
Ka taea te huamaha pūrua te tauwehe mā te whakamahi i te huringa ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ina ko x_{1} me x_{2} ngā otinga o te whārite pūrua ax^{2}+bx+c=0.
x=\frac{-\left(-30\right)±\sqrt{\left(-30\right)^{2}-4\times 20\left(-20\right)}}{2\times 20}
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-\left(-30\right)±\sqrt{900-4\times 20\left(-20\right)}}{2\times 20}
Pūrua -30.
x=\frac{-\left(-30\right)±\sqrt{900-80\left(-20\right)}}{2\times 20}
Whakareatia -4 ki te 20.
x=\frac{-\left(-30\right)±\sqrt{900+1600}}{2\times 20}
Whakareatia -80 ki te -20.
x=\frac{-\left(-30\right)±\sqrt{2500}}{2\times 20}
Tāpiri 900 ki te 1600.
x=\frac{-\left(-30\right)±50}{2\times 20}
Tuhia te pūtakerua o te 2500.
x=\frac{30±50}{2\times 20}
Ko te tauaro o -30 ko 30.
x=\frac{30±50}{40}
Whakareatia 2 ki te 20.
x=\frac{80}{40}
Nā, me whakaoti te whārite x=\frac{30±50}{40} ina he tāpiri te ±. Tāpiri 30 ki te 50.
x=2
Whakawehe 80 ki te 40.
x=-\frac{20}{40}
Nā, me whakaoti te whārite x=\frac{30±50}{40} ina he tango te ±. Tango 50 mai i 30.
x=-\frac{1}{2}
Whakahekea te hautanga \frac{-20}{40} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 20.
20x^{2}-30x-20=20\left(x-2\right)\left(x-\left(-\frac{1}{2}\right)\right)
Tauwehea te kīanga taketake mā te whakamahi i te ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Me whakakapi te 2 mō te x_{1} me te -\frac{1}{2} mō te x_{2}.
20x^{2}-30x-20=20\left(x-2\right)\left(x+\frac{1}{2}\right)
Whakamāmātia ngā kīanga katoa o te āhua p-\left(-q\right) ki te p+q.
20x^{2}-30x-20=20\left(x-2\right)\times \frac{2x+1}{2}
Tāpiri \frac{1}{2} ki te x mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
20x^{2}-30x-20=10\left(x-2\right)\left(2x+1\right)
Whakakorea atu te tauwehe pūnoa nui rawa 2 i roto i te 20 me te 2.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}