Whakaoti mō x
x = \frac{3 \sqrt{6} + 7}{10} \approx 1.434846923
x=\frac{7-3\sqrt{6}}{10}\approx -0.034846923
Graph
Tohaina
Kua tāruatia ki te papatopenga
20x^{2}-28x-1=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-\left(-28\right)±\sqrt{\left(-28\right)^{2}-4\times 20\left(-1\right)}}{2\times 20}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 20 mō a, -28 mō b, me -1 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-28\right)±\sqrt{784-4\times 20\left(-1\right)}}{2\times 20}
Pūrua -28.
x=\frac{-\left(-28\right)±\sqrt{784-80\left(-1\right)}}{2\times 20}
Whakareatia -4 ki te 20.
x=\frac{-\left(-28\right)±\sqrt{784+80}}{2\times 20}
Whakareatia -80 ki te -1.
x=\frac{-\left(-28\right)±\sqrt{864}}{2\times 20}
Tāpiri 784 ki te 80.
x=\frac{-\left(-28\right)±12\sqrt{6}}{2\times 20}
Tuhia te pūtakerua o te 864.
x=\frac{28±12\sqrt{6}}{2\times 20}
Ko te tauaro o -28 ko 28.
x=\frac{28±12\sqrt{6}}{40}
Whakareatia 2 ki te 20.
x=\frac{12\sqrt{6}+28}{40}
Nā, me whakaoti te whārite x=\frac{28±12\sqrt{6}}{40} ina he tāpiri te ±. Tāpiri 28 ki te 12\sqrt{6}.
x=\frac{3\sqrt{6}+7}{10}
Whakawehe 28+12\sqrt{6} ki te 40.
x=\frac{28-12\sqrt{6}}{40}
Nā, me whakaoti te whārite x=\frac{28±12\sqrt{6}}{40} ina he tango te ±. Tango 12\sqrt{6} mai i 28.
x=\frac{7-3\sqrt{6}}{10}
Whakawehe 28-12\sqrt{6} ki te 40.
x=\frac{3\sqrt{6}+7}{10} x=\frac{7-3\sqrt{6}}{10}
Kua oti te whārite te whakatau.
20x^{2}-28x-1=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
20x^{2}-28x-1-\left(-1\right)=-\left(-1\right)
Me tāpiri 1 ki ngā taha e rua o te whārite.
20x^{2}-28x=-\left(-1\right)
Mā te tango i te -1 i a ia ake anō ka toe ko te 0.
20x^{2}-28x=1
Tango -1 mai i 0.
\frac{20x^{2}-28x}{20}=\frac{1}{20}
Whakawehea ngā taha e rua ki te 20.
x^{2}+\left(-\frac{28}{20}\right)x=\frac{1}{20}
Mā te whakawehe ki te 20 ka wetekia te whakareanga ki te 20.
x^{2}-\frac{7}{5}x=\frac{1}{20}
Whakahekea te hautanga \frac{-28}{20} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 4.
x^{2}-\frac{7}{5}x+\left(-\frac{7}{10}\right)^{2}=\frac{1}{20}+\left(-\frac{7}{10}\right)^{2}
Whakawehea te -\frac{7}{5}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{7}{10}. Nā, tāpiria te pūrua o te -\frac{7}{10} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-\frac{7}{5}x+\frac{49}{100}=\frac{1}{20}+\frac{49}{100}
Pūruatia -\frac{7}{10} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}-\frac{7}{5}x+\frac{49}{100}=\frac{27}{50}
Tāpiri \frac{1}{20} ki te \frac{49}{100} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(x-\frac{7}{10}\right)^{2}=\frac{27}{50}
Tauwehea x^{2}-\frac{7}{5}x+\frac{49}{100}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{7}{10}\right)^{2}}=\sqrt{\frac{27}{50}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-\frac{7}{10}=\frac{3\sqrt{6}}{10} x-\frac{7}{10}=-\frac{3\sqrt{6}}{10}
Whakarūnātia.
x=\frac{3\sqrt{6}+7}{10} x=\frac{7-3\sqrt{6}}{10}
Me tāpiri \frac{7}{10} ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}