Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

20x^{2}-392x-1584=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-\left(-392\right)±\sqrt{\left(-392\right)^{2}-4\times 20\left(-1584\right)}}{2\times 20}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 20 mō a, -392 mō b, me -1584 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-392\right)±\sqrt{153664-4\times 20\left(-1584\right)}}{2\times 20}
Pūrua -392.
x=\frac{-\left(-392\right)±\sqrt{153664-80\left(-1584\right)}}{2\times 20}
Whakareatia -4 ki te 20.
x=\frac{-\left(-392\right)±\sqrt{153664+126720}}{2\times 20}
Whakareatia -80 ki te -1584.
x=\frac{-\left(-392\right)±\sqrt{280384}}{2\times 20}
Tāpiri 153664 ki te 126720.
x=\frac{-\left(-392\right)±8\sqrt{4381}}{2\times 20}
Tuhia te pūtakerua o te 280384.
x=\frac{392±8\sqrt{4381}}{2\times 20}
Ko te tauaro o -392 ko 392.
x=\frac{392±8\sqrt{4381}}{40}
Whakareatia 2 ki te 20.
x=\frac{8\sqrt{4381}+392}{40}
Nā, me whakaoti te whārite x=\frac{392±8\sqrt{4381}}{40} ina he tāpiri te ±. Tāpiri 392 ki te 8\sqrt{4381}.
x=\frac{\sqrt{4381}+49}{5}
Whakawehe 392+8\sqrt{4381} ki te 40.
x=\frac{392-8\sqrt{4381}}{40}
Nā, me whakaoti te whārite x=\frac{392±8\sqrt{4381}}{40} ina he tango te ±. Tango 8\sqrt{4381} mai i 392.
x=\frac{49-\sqrt{4381}}{5}
Whakawehe 392-8\sqrt{4381} ki te 40.
x=\frac{\sqrt{4381}+49}{5} x=\frac{49-\sqrt{4381}}{5}
Kua oti te whārite te whakatau.
20x^{2}-392x-1584=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
20x^{2}-392x-1584-\left(-1584\right)=-\left(-1584\right)
Me tāpiri 1584 ki ngā taha e rua o te whārite.
20x^{2}-392x=-\left(-1584\right)
Mā te tango i te -1584 i a ia ake anō ka toe ko te 0.
20x^{2}-392x=1584
Tango -1584 mai i 0.
\frac{20x^{2}-392x}{20}=\frac{1584}{20}
Whakawehea ngā taha e rua ki te 20.
x^{2}+\left(-\frac{392}{20}\right)x=\frac{1584}{20}
Mā te whakawehe ki te 20 ka wetekia te whakareanga ki te 20.
x^{2}-\frac{98}{5}x=\frac{1584}{20}
Whakahekea te hautanga \frac{-392}{20} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 4.
x^{2}-\frac{98}{5}x=\frac{396}{5}
Whakahekea te hautanga \frac{1584}{20} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 4.
x^{2}-\frac{98}{5}x+\left(-\frac{49}{5}\right)^{2}=\frac{396}{5}+\left(-\frac{49}{5}\right)^{2}
Whakawehea te -\frac{98}{5}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{49}{5}. Nā, tāpiria te pūrua o te -\frac{49}{5} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-\frac{98}{5}x+\frac{2401}{25}=\frac{396}{5}+\frac{2401}{25}
Pūruatia -\frac{49}{5} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}-\frac{98}{5}x+\frac{2401}{25}=\frac{4381}{25}
Tāpiri \frac{396}{5} ki te \frac{2401}{25} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(x-\frac{49}{5}\right)^{2}=\frac{4381}{25}
Tauwehea x^{2}-\frac{98}{5}x+\frac{2401}{25}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{49}{5}\right)^{2}}=\sqrt{\frac{4381}{25}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-\frac{49}{5}=\frac{\sqrt{4381}}{5} x-\frac{49}{5}=-\frac{\sqrt{4381}}{5}
Whakarūnātia.
x=\frac{\sqrt{4381}+49}{5} x=\frac{49-\sqrt{4381}}{5}
Me tāpiri \frac{49}{5} ki ngā taha e rua o te whārite.