Whakaoti mō x
x=-\frac{1}{10}=-0.1
x=0
Graph
Tohaina
Kua tāruatia ki te papatopenga
20x^{2}+2x-0=0
Whakareatia te 0 ki te 8, ka 0.
20x^{2}+2x=0
Whakaraupapatia anō ngā kīanga tau.
x\left(20x+2\right)=0
Tauwehea te x.
x=0 x=-\frac{1}{10}
Hei kimi otinga whārite, me whakaoti te x=0 me te 20x+2=0.
20x^{2}+2x-0=0
Whakareatia te 0 ki te 8, ka 0.
20x^{2}+2x=0
Whakaraupapatia anō ngā kīanga tau.
x=\frac{-2±\sqrt{2^{2}}}{2\times 20}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 20 mō a, 2 mō b, me 0 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-2±2}{2\times 20}
Tuhia te pūtakerua o te 2^{2}.
x=\frac{-2±2}{40}
Whakareatia 2 ki te 20.
x=\frac{0}{40}
Nā, me whakaoti te whārite x=\frac{-2±2}{40} ina he tāpiri te ±. Tāpiri -2 ki te 2.
x=0
Whakawehe 0 ki te 40.
x=-\frac{4}{40}
Nā, me whakaoti te whārite x=\frac{-2±2}{40} ina he tango te ±. Tango 2 mai i -2.
x=-\frac{1}{10}
Whakahekea te hautanga \frac{-4}{40} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 4.
x=0 x=-\frac{1}{10}
Kua oti te whārite te whakatau.
20x^{2}+2x-0=0
Whakareatia te 0 ki te 8, ka 0.
20x^{2}+2x=0+0
Me tāpiri te 0 ki ngā taha e rua.
20x^{2}+2x=0
Tāpirihia te 0 ki te 0, ka 0.
\frac{20x^{2}+2x}{20}=\frac{0}{20}
Whakawehea ngā taha e rua ki te 20.
x^{2}+\frac{2}{20}x=\frac{0}{20}
Mā te whakawehe ki te 20 ka wetekia te whakareanga ki te 20.
x^{2}+\frac{1}{10}x=\frac{0}{20}
Whakahekea te hautanga \frac{2}{20} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
x^{2}+\frac{1}{10}x=0
Whakawehe 0 ki te 20.
x^{2}+\frac{1}{10}x+\left(\frac{1}{20}\right)^{2}=\left(\frac{1}{20}\right)^{2}
Whakawehea te \frac{1}{10}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te \frac{1}{20}. Nā, tāpiria te pūrua o te \frac{1}{20} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+\frac{1}{10}x+\frac{1}{400}=\frac{1}{400}
Pūruatia \frac{1}{20} mā te pūrua i te taurunga me te tauraro o te hautanga.
\left(x+\frac{1}{20}\right)^{2}=\frac{1}{400}
Tauwehea x^{2}+\frac{1}{10}x+\frac{1}{400}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{1}{20}\right)^{2}}=\sqrt{\frac{1}{400}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+\frac{1}{20}=\frac{1}{20} x+\frac{1}{20}=-\frac{1}{20}
Whakarūnātia.
x=0 x=-\frac{1}{10}
Me tango \frac{1}{20} mai i ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}