Whakaoti mō p
p = -\frac{5}{4} = -1\frac{1}{4} = -1.25
p=-\frac{2}{5}=-0.4
Tohaina
Kua tāruatia ki te papatopenga
20p^{2}+33p+16-6=0
Tangohia te 6 mai i ngā taha e rua.
20p^{2}+33p+10=0
Tangohia te 6 i te 16, ka 10.
a+b=33 ab=20\times 10=200
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei 20p^{2}+ap+bp+10. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
1,200 2,100 4,50 5,40 8,25 10,20
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōrunga te a+b, he tōrunga hoki a a me b. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua 200.
1+200=201 2+100=102 4+50=54 5+40=45 8+25=33 10+20=30
Tātaihia te tapeke mō ia takirua.
a=8 b=25
Ko te otinga te takirua ka hoatu i te tapeke 33.
\left(20p^{2}+8p\right)+\left(25p+10\right)
Tuhia anō te 20p^{2}+33p+10 hei \left(20p^{2}+8p\right)+\left(25p+10\right).
4p\left(5p+2\right)+5\left(5p+2\right)
Tauwehea te 4p i te tuatahi me te 5 i te rōpū tuarua.
\left(5p+2\right)\left(4p+5\right)
Whakatauwehea atu te kīanga pātahi 5p+2 mā te whakamahi i te āhuatanga tātai tohatoha.
p=-\frac{2}{5} p=-\frac{5}{4}
Hei kimi otinga whārite, me whakaoti te 5p+2=0 me te 4p+5=0.
20p^{2}+33p+16=6
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
20p^{2}+33p+16-6=6-6
Me tango 6 mai i ngā taha e rua o te whārite.
20p^{2}+33p+16-6=0
Mā te tango i te 6 i a ia ake anō ka toe ko te 0.
20p^{2}+33p+10=0
Tango 6 mai i 16.
p=\frac{-33±\sqrt{33^{2}-4\times 20\times 10}}{2\times 20}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 20 mō a, 33 mō b, me 10 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
p=\frac{-33±\sqrt{1089-4\times 20\times 10}}{2\times 20}
Pūrua 33.
p=\frac{-33±\sqrt{1089-80\times 10}}{2\times 20}
Whakareatia -4 ki te 20.
p=\frac{-33±\sqrt{1089-800}}{2\times 20}
Whakareatia -80 ki te 10.
p=\frac{-33±\sqrt{289}}{2\times 20}
Tāpiri 1089 ki te -800.
p=\frac{-33±17}{2\times 20}
Tuhia te pūtakerua o te 289.
p=\frac{-33±17}{40}
Whakareatia 2 ki te 20.
p=-\frac{16}{40}
Nā, me whakaoti te whārite p=\frac{-33±17}{40} ina he tāpiri te ±. Tāpiri -33 ki te 17.
p=-\frac{2}{5}
Whakahekea te hautanga \frac{-16}{40} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 8.
p=-\frac{50}{40}
Nā, me whakaoti te whārite p=\frac{-33±17}{40} ina he tango te ±. Tango 17 mai i -33.
p=-\frac{5}{4}
Whakahekea te hautanga \frac{-50}{40} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 10.
p=-\frac{2}{5} p=-\frac{5}{4}
Kua oti te whārite te whakatau.
20p^{2}+33p+16=6
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
20p^{2}+33p+16-16=6-16
Me tango 16 mai i ngā taha e rua o te whārite.
20p^{2}+33p=6-16
Mā te tango i te 16 i a ia ake anō ka toe ko te 0.
20p^{2}+33p=-10
Tango 16 mai i 6.
\frac{20p^{2}+33p}{20}=-\frac{10}{20}
Whakawehea ngā taha e rua ki te 20.
p^{2}+\frac{33}{20}p=-\frac{10}{20}
Mā te whakawehe ki te 20 ka wetekia te whakareanga ki te 20.
p^{2}+\frac{33}{20}p=-\frac{1}{2}
Whakahekea te hautanga \frac{-10}{20} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 10.
p^{2}+\frac{33}{20}p+\left(\frac{33}{40}\right)^{2}=-\frac{1}{2}+\left(\frac{33}{40}\right)^{2}
Whakawehea te \frac{33}{20}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te \frac{33}{40}. Nā, tāpiria te pūrua o te \frac{33}{40} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
p^{2}+\frac{33}{20}p+\frac{1089}{1600}=-\frac{1}{2}+\frac{1089}{1600}
Pūruatia \frac{33}{40} mā te pūrua i te taurunga me te tauraro o te hautanga.
p^{2}+\frac{33}{20}p+\frac{1089}{1600}=\frac{289}{1600}
Tāpiri -\frac{1}{2} ki te \frac{1089}{1600} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(p+\frac{33}{40}\right)^{2}=\frac{289}{1600}
Tauwehea p^{2}+\frac{33}{20}p+\frac{1089}{1600}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(p+\frac{33}{40}\right)^{2}}=\sqrt{\frac{289}{1600}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
p+\frac{33}{40}=\frac{17}{40} p+\frac{33}{40}=-\frac{17}{40}
Whakarūnātia.
p=-\frac{2}{5} p=-\frac{5}{4}
Me tango \frac{33}{40} mai i ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}