Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

a+b=-1 ab=20\left(-1\right)=-20
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei 20x^{2}+ax+bx-1. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
1,-20 2,-10 4,-5
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōraro te a+b, he nui ake te uara pū o te tau tōraro i tō te tōrunga. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -20.
1-20=-19 2-10=-8 4-5=-1
Tātaihia te tapeke mō ia takirua.
a=-5 b=4
Ko te otinga te takirua ka hoatu i te tapeke -1.
\left(20x^{2}-5x\right)+\left(4x-1\right)
Tuhia anō te 20x^{2}-x-1 hei \left(20x^{2}-5x\right)+\left(4x-1\right).
5x\left(4x-1\right)+4x-1
Whakatauwehea atu 5x i te 20x^{2}-5x.
\left(4x-1\right)\left(5x+1\right)
Whakatauwehea atu te kīanga pātahi 4x-1 mā te whakamahi i te āhuatanga tātai tohatoha.
x=\frac{1}{4} x=-\frac{1}{5}
Hei kimi otinga whārite, me whakaoti te 4x-1=0 me te 5x+1=0.
20x^{2}-x-1=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-\left(-1\right)±\sqrt{1-4\times 20\left(-1\right)}}{2\times 20}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 20 mō a, -1 mō b, me -1 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-1\right)±\sqrt{1-80\left(-1\right)}}{2\times 20}
Whakareatia -4 ki te 20.
x=\frac{-\left(-1\right)±\sqrt{1+80}}{2\times 20}
Whakareatia -80 ki te -1.
x=\frac{-\left(-1\right)±\sqrt{81}}{2\times 20}
Tāpiri 1 ki te 80.
x=\frac{-\left(-1\right)±9}{2\times 20}
Tuhia te pūtakerua o te 81.
x=\frac{1±9}{2\times 20}
Ko te tauaro o -1 ko 1.
x=\frac{1±9}{40}
Whakareatia 2 ki te 20.
x=\frac{10}{40}
Nā, me whakaoti te whārite x=\frac{1±9}{40} ina he tāpiri te ±. Tāpiri 1 ki te 9.
x=\frac{1}{4}
Whakahekea te hautanga \frac{10}{40} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 10.
x=-\frac{8}{40}
Nā, me whakaoti te whārite x=\frac{1±9}{40} ina he tango te ±. Tango 9 mai i 1.
x=-\frac{1}{5}
Whakahekea te hautanga \frac{-8}{40} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 8.
x=\frac{1}{4} x=-\frac{1}{5}
Kua oti te whārite te whakatau.
20x^{2}-x-1=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
20x^{2}-x-1-\left(-1\right)=-\left(-1\right)
Me tāpiri 1 ki ngā taha e rua o te whārite.
20x^{2}-x=-\left(-1\right)
Mā te tango i te -1 i a ia ake anō ka toe ko te 0.
20x^{2}-x=1
Tango -1 mai i 0.
\frac{20x^{2}-x}{20}=\frac{1}{20}
Whakawehea ngā taha e rua ki te 20.
x^{2}-\frac{1}{20}x=\frac{1}{20}
Mā te whakawehe ki te 20 ka wetekia te whakareanga ki te 20.
x^{2}-\frac{1}{20}x+\left(-\frac{1}{40}\right)^{2}=\frac{1}{20}+\left(-\frac{1}{40}\right)^{2}
Whakawehea te -\frac{1}{20}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{1}{40}. Nā, tāpiria te pūrua o te -\frac{1}{40} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-\frac{1}{20}x+\frac{1}{1600}=\frac{1}{20}+\frac{1}{1600}
Pūruatia -\frac{1}{40} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}-\frac{1}{20}x+\frac{1}{1600}=\frac{81}{1600}
Tāpiri \frac{1}{20} ki te \frac{1}{1600} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(x-\frac{1}{40}\right)^{2}=\frac{81}{1600}
Tauwehea x^{2}-\frac{1}{20}x+\frac{1}{1600}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{1}{40}\right)^{2}}=\sqrt{\frac{81}{1600}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-\frac{1}{40}=\frac{9}{40} x-\frac{1}{40}=-\frac{9}{40}
Whakarūnātia.
x=\frac{1}{4} x=-\frac{1}{5}
Me tāpiri \frac{1}{40} ki ngā taha e rua o te whārite.