Aromātai
279
Tauwehe
3^{2}\times 31
Tohaina
Kua tāruatia ki te papatopenga
20\left(10+\frac{5}{2}\right)-16+5\left(5+4\right)
Whakahekea te hautanga \frac{10}{4} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
20\left(\frac{20}{2}+\frac{5}{2}\right)-16+5\left(5+4\right)
Me tahuri te 10 ki te hautau \frac{20}{2}.
20\times \frac{20+5}{2}-16+5\left(5+4\right)
Tā te mea he rite te tauraro o \frac{20}{2} me \frac{5}{2}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
20\times \frac{25}{2}-16+5\left(5+4\right)
Tāpirihia te 20 ki te 5, ka 25.
\frac{20\times 25}{2}-16+5\left(5+4\right)
Tuhia te 20\times \frac{25}{2} hei hautanga kotahi.
\frac{500}{2}-16+5\left(5+4\right)
Whakareatia te 20 ki te 25, ka 500.
250-16+5\left(5+4\right)
Whakawehea te 500 ki te 2, kia riro ko 250.
234+5\left(5+4\right)
Tangohia te 16 i te 250, ka 234.
234+5\times 9
Tāpirihia te 5 ki te 4, ka 9.
234+45
Whakareatia te 5 ki te 9, ka 45.
279
Tāpirihia te 234 ki te 45, ka 279.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}