Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Tauwehe
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{20}{12}+2\times \frac{4}{n}-\frac{2}{n}-5\times \frac{5}{12}
Whakareatia te 20 ki te \frac{1}{12}, ka \frac{20}{12}.
\frac{5}{3}+2\times \frac{4}{n}-\frac{2}{n}-5\times \frac{5}{12}
Whakahekea te hautanga \frac{20}{12} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 4.
\frac{5}{3}+\frac{2\times 4}{n}-\frac{2}{n}-5\times \frac{5}{12}
Tuhia te 2\times \frac{4}{n} hei hautanga kotahi.
\frac{5}{3}+\frac{2\times 4}{n}-\frac{2}{n}+\frac{-5\times 5}{12}
Tuhia te -5\times \frac{5}{12} hei hautanga kotahi.
\frac{5}{3}+\frac{2\times 4}{n}-\frac{2}{n}+\frac{-25}{12}
Whakareatia te -5 ki te 5, ka -25.
\frac{5}{3}+\frac{2\times 4}{n}-\frac{2}{n}-\frac{25}{12}
Ka taea te hautanga \frac{-25}{12} te tuhi anō ko -\frac{25}{12} mā te tango i te tohu tōraro.
\frac{20}{12}+\frac{2\times 4}{n}-\frac{2}{n}-\frac{25}{12}
Ko te maha noa iti rawa atu o 3 me 12 ko 12. Me tahuri \frac{5}{3} me \frac{25}{12} ki te hautau me te tautūnga 12.
\frac{20-25}{12}+\frac{2\times 4}{n}-\frac{2}{n}
Tā te mea he rite te tauraro o \frac{20}{12} me \frac{25}{12}, me tango rāua mā te tango i ō raua taurunga.
-\frac{5}{12}+\frac{2\times 4}{n}-\frac{2}{n}
Tangohia te 25 i te 20, ka -5.
-\frac{5n}{12n}+\frac{12\times 2\times 4}{12n}-\frac{2}{n}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o 12 me n ko 12n. Whakareatia -\frac{5}{12} ki te \frac{n}{n}. Whakareatia \frac{2\times 4}{n} ki te \frac{12}{12}.
\frac{-5n+12\times 2\times 4}{12n}-\frac{2}{n}
Tā te mea he rite te tauraro o -\frac{5n}{12n} me \frac{12\times 2\times 4}{12n}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{-5n+96}{12n}-\frac{2}{n}
Mahia ngā whakarea i roto o -5n+12\times 2\times 4.
\frac{-5n+96}{12n}-\frac{2\times 12}{12n}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o 12n me n ko 12n. Whakareatia \frac{2}{n} ki te \frac{12}{12}.
\frac{-5n+96-2\times 12}{12n}
Tā te mea he rite te tauraro o \frac{-5n+96}{12n} me \frac{2\times 12}{12n}, me tango rāua mā te tango i ō raua taurunga.
\frac{-5n+96-24}{12n}
Mahia ngā whakarea i roto o -5n+96-2\times 12.
\frac{-5n+72}{12n}
Whakakotahitia ngā kupu rite i -5n+96-24.