20 \% \times x + 5 \% \times y = 9 \% \times 300
Whakaoti mō x
x=-\frac{y}{4}+135
Whakaoti mō y
y=540-4x
Graph
Tohaina
Kua tāruatia ki te papatopenga
\frac{1}{5}x+\frac{5}{100}y=\frac{9}{100}\times 300
Whakahekea te hautanga \frac{20}{100} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 20.
\frac{1}{5}x+\frac{1}{20}y=\frac{9}{100}\times 300
Whakahekea te hautanga \frac{5}{100} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 5.
\frac{1}{5}x+\frac{1}{20}y=27
Whakareatia te \frac{9}{100} ki te 300, ka 27.
\frac{1}{5}x=27-\frac{1}{20}y
Tangohia te \frac{1}{20}y mai i ngā taha e rua.
\frac{1}{5}x=-\frac{y}{20}+27
He hanga arowhānui tō te whārite.
\frac{\frac{1}{5}x}{\frac{1}{5}}=\frac{-\frac{y}{20}+27}{\frac{1}{5}}
Me whakarea ngā taha e rua ki te 5.
x=\frac{-\frac{y}{20}+27}{\frac{1}{5}}
Mā te whakawehe ki te \frac{1}{5} ka wetekia te whakareanga ki te \frac{1}{5}.
x=-\frac{y}{4}+135
Whakawehe 27-\frac{y}{20} ki te \frac{1}{5} mā te whakarea 27-\frac{y}{20} ki te tau huripoki o \frac{1}{5}.
\frac{1}{5}x+\frac{5}{100}y=\frac{9}{100}\times 300
Whakahekea te hautanga \frac{20}{100} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 20.
\frac{1}{5}x+\frac{1}{20}y=\frac{9}{100}\times 300
Whakahekea te hautanga \frac{5}{100} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 5.
\frac{1}{5}x+\frac{1}{20}y=27
Whakareatia te \frac{9}{100} ki te 300, ka 27.
\frac{1}{20}y=27-\frac{1}{5}x
Tangohia te \frac{1}{5}x mai i ngā taha e rua.
\frac{1}{20}y=-\frac{x}{5}+27
He hanga arowhānui tō te whārite.
\frac{\frac{1}{20}y}{\frac{1}{20}}=\frac{-\frac{x}{5}+27}{\frac{1}{20}}
Me whakarea ngā taha e rua ki te 20.
y=\frac{-\frac{x}{5}+27}{\frac{1}{20}}
Mā te whakawehe ki te \frac{1}{20} ka wetekia te whakareanga ki te \frac{1}{20}.
y=540-4x
Whakawehe 27-\frac{x}{5} ki te \frac{1}{20} mā te whakarea 27-\frac{x}{5} ki te tau huripoki o \frac{1}{20}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}