Whakaoti mō a
a=\frac{361+27\times 3^{b}-2b^{2}}{b}
b\neq 0
Tohaina
Kua tāruatia ki te papatopenga
400-ab-2b^{2}=39-3^{b+3}
Tātaihia te 20 mā te pū o 2, kia riro ko 400.
-ab-2b^{2}=39-3^{b+3}-400
Tangohia te 400 mai i ngā taha e rua.
-ab=39-3^{b+3}-400+2b^{2}
Me tāpiri te 2b^{2} ki ngā taha e rua.
-ab=-361-3^{b+3}+2b^{2}
Tangohia te 400 i te 39, ka -361.
\left(-b\right)a=2b^{2}-3^{b+3}-361
He hanga arowhānui tō te whārite.
\frac{\left(-b\right)a}{-b}=\frac{2b^{2}-27\times 3^{b}-361}{-b}
Whakawehea ngā taha e rua ki te -b.
a=\frac{2b^{2}-27\times 3^{b}-361}{-b}
Mā te whakawehe ki te -b ka wetekia te whakareanga ki te -b.
a=\frac{27\times 3^{b}+361}{b}-2b
Whakawehe -361-27\times 3^{b}+2b^{2} ki te -b.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}