Whakaoti mō A
A=\frac{256}{D^{2}}
D\neq 0
Whakaoti mō D (complex solution)
D=-16A^{-\frac{1}{2}}
D=16A^{-\frac{1}{2}}\text{, }A\neq 0
Whakaoti mō D
D=\frac{16}{\sqrt{A}}
D=-\frac{16}{\sqrt{A}}\text{, }A>0
Tohaina
Kua tāruatia ki te papatopenga
400=AD^{2}+12^{2}
Tātaihia te 20 mā te pū o 2, kia riro ko 400.
400=AD^{2}+144
Tātaihia te 12 mā te pū o 2, kia riro ko 144.
AD^{2}+144=400
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
AD^{2}=400-144
Tangohia te 144 mai i ngā taha e rua.
AD^{2}=256
Tangohia te 144 i te 400, ka 256.
D^{2}A=256
He hanga arowhānui tō te whārite.
\frac{D^{2}A}{D^{2}}=\frac{256}{D^{2}}
Whakawehea ngā taha e rua ki te D^{2}.
A=\frac{256}{D^{2}}
Mā te whakawehe ki te D^{2} ka wetekia te whakareanga ki te D^{2}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}