Whakaoti mō t
t = \frac{3 \sqrt{610} + 10}{49} \approx 1.716214984
t=\frac{10-3\sqrt{610}}{49}\approx -1.308051719
Tohaina
Kua tāruatia ki te papatopenga
-49t^{2}+20t+130=20
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
-49t^{2}+20t+130-20=0
Tangohia te 20 mai i ngā taha e rua.
-49t^{2}+20t+110=0
Tangohia te 20 i te 130, ka 110.
t=\frac{-20±\sqrt{20^{2}-4\left(-49\right)\times 110}}{2\left(-49\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -49 mō a, 20 mō b, me 110 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
t=\frac{-20±\sqrt{400-4\left(-49\right)\times 110}}{2\left(-49\right)}
Pūrua 20.
t=\frac{-20±\sqrt{400+196\times 110}}{2\left(-49\right)}
Whakareatia -4 ki te -49.
t=\frac{-20±\sqrt{400+21560}}{2\left(-49\right)}
Whakareatia 196 ki te 110.
t=\frac{-20±\sqrt{21960}}{2\left(-49\right)}
Tāpiri 400 ki te 21560.
t=\frac{-20±6\sqrt{610}}{2\left(-49\right)}
Tuhia te pūtakerua o te 21960.
t=\frac{-20±6\sqrt{610}}{-98}
Whakareatia 2 ki te -49.
t=\frac{6\sqrt{610}-20}{-98}
Nā, me whakaoti te whārite t=\frac{-20±6\sqrt{610}}{-98} ina he tāpiri te ±. Tāpiri -20 ki te 6\sqrt{610}.
t=\frac{10-3\sqrt{610}}{49}
Whakawehe -20+6\sqrt{610} ki te -98.
t=\frac{-6\sqrt{610}-20}{-98}
Nā, me whakaoti te whārite t=\frac{-20±6\sqrt{610}}{-98} ina he tango te ±. Tango 6\sqrt{610} mai i -20.
t=\frac{3\sqrt{610}+10}{49}
Whakawehe -20-6\sqrt{610} ki te -98.
t=\frac{10-3\sqrt{610}}{49} t=\frac{3\sqrt{610}+10}{49}
Kua oti te whārite te whakatau.
-49t^{2}+20t+130=20
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
-49t^{2}+20t=20-130
Tangohia te 130 mai i ngā taha e rua.
-49t^{2}+20t=-110
Tangohia te 130 i te 20, ka -110.
\frac{-49t^{2}+20t}{-49}=-\frac{110}{-49}
Whakawehea ngā taha e rua ki te -49.
t^{2}+\frac{20}{-49}t=-\frac{110}{-49}
Mā te whakawehe ki te -49 ka wetekia te whakareanga ki te -49.
t^{2}-\frac{20}{49}t=-\frac{110}{-49}
Whakawehe 20 ki te -49.
t^{2}-\frac{20}{49}t=\frac{110}{49}
Whakawehe -110 ki te -49.
t^{2}-\frac{20}{49}t+\left(-\frac{10}{49}\right)^{2}=\frac{110}{49}+\left(-\frac{10}{49}\right)^{2}
Whakawehea te -\frac{20}{49}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{10}{49}. Nā, tāpiria te pūrua o te -\frac{10}{49} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
t^{2}-\frac{20}{49}t+\frac{100}{2401}=\frac{110}{49}+\frac{100}{2401}
Pūruatia -\frac{10}{49} mā te pūrua i te taurunga me te tauraro o te hautanga.
t^{2}-\frac{20}{49}t+\frac{100}{2401}=\frac{5490}{2401}
Tāpiri \frac{110}{49} ki te \frac{100}{2401} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(t-\frac{10}{49}\right)^{2}=\frac{5490}{2401}
Tauwehea t^{2}-\frac{20}{49}t+\frac{100}{2401}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(t-\frac{10}{49}\right)^{2}}=\sqrt{\frac{5490}{2401}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
t-\frac{10}{49}=\frac{3\sqrt{610}}{49} t-\frac{10}{49}=-\frac{3\sqrt{610}}{49}
Whakarūnātia.
t=\frac{3\sqrt{610}+10}{49} t=\frac{10-3\sqrt{610}}{49}
Me tāpiri \frac{10}{49} ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}