Aromātai
\frac{259ot\sigma _{2}m^{2}}{15000}
Kimi Pārōnaki e ai ki o
\frac{259t\sigma _{2}m^{2}}{15000}
Tohaina
Kua tāruatia ki te papatopenga
2.59\times \frac{1}{100}mot\sigma _{2}\times \frac{2m}{3}
Tātaihia te 10 mā te pū o -2, kia riro ko \frac{1}{100}.
\frac{259}{10000}mot\sigma _{2}\times \frac{2m}{3}
Whakareatia te 2.59 ki te \frac{1}{100}, ka \frac{259}{10000}.
\frac{259\times 2m}{10000\times 3}mot\sigma _{2}
Me whakarea te \frac{259}{10000} ki te \frac{2m}{3} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{259m}{3\times 5000}mot\sigma _{2}
Me whakakore tahi te 2 i te taurunga me te tauraro.
\frac{259m}{15000}mot\sigma _{2}
Whakareatia te 3 ki te 5000, ka 15000.
\frac{259mm}{15000}ot\sigma _{2}
Tuhia te \frac{259m}{15000}m hei hautanga kotahi.
\frac{259mmo}{15000}t\sigma _{2}
Tuhia te \frac{259mm}{15000}o hei hautanga kotahi.
\frac{259mmot}{15000}\sigma _{2}
Tuhia te \frac{259mmo}{15000}t hei hautanga kotahi.
\frac{259mmot\sigma _{2}}{15000}
Tuhia te \frac{259mmot}{15000}\sigma _{2} hei hautanga kotahi.
\frac{259m^{2}ot\sigma _{2}}{15000}
Whakareatia te m ki te m, ka m^{2}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}