Whakaoti mō m
m=40
Pātaitai
Linear Equation
5 raruraru e ōrite ana ki:
2.3 \times 22 + ( 2.3 + 1.1 ) \times ( 0.7 m - 22 ) = 71
Tohaina
Kua tāruatia ki te papatopenga
50.6+\left(2.3+1.1\right)\left(0.7m-22\right)=71
Whakareatia te 2.3 ki te 22, ka 50.6.
50.6+3.4\left(0.7m-22\right)=71
Tāpirihia te 2.3 ki te 1.1, ka 3.4.
50.6+2.38m-74.8=71
Whakamahia te āhuatanga tohatoha hei whakarea te 3.4 ki te 0.7m-22.
-24.2+2.38m=71
Tangohia te 74.8 i te 50.6, ka -24.2.
2.38m=71+24.2
Me tāpiri te 24.2 ki ngā taha e rua.
2.38m=95.2
Tāpirihia te 71 ki te 24.2, ka 95.2.
m=\frac{95.2}{2.38}
Whakawehea ngā taha e rua ki te 2.38.
m=\frac{9520}{238}
Whakarohaina te \frac{95.2}{2.38} mā te whakarea i te taurunga me te tauraro ki te 100.
m=40
Whakawehea te 9520 ki te 238, kia riro ko 40.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}