Aromātai
1.9
Tauwehe
\frac{19}{2 \cdot 5} = 1\frac{9}{10} = 1.9
Tohaina
Kua tāruatia ki te papatopenga
\frac{23}{40}+\frac{5.5}{8}+\frac{7.1}{12}+\frac{1.1}{24}
Whakarohaina te \frac{2.3}{4} mā te whakarea i te taurunga me te tauraro ki te 10.
\frac{23}{40}+\frac{55}{80}+\frac{7.1}{12}+\frac{1.1}{24}
Whakarohaina te \frac{5.5}{8} mā te whakarea i te taurunga me te tauraro ki te 10.
\frac{23}{40}+\frac{11}{16}+\frac{7.1}{12}+\frac{1.1}{24}
Whakahekea te hautanga \frac{55}{80} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 5.
\frac{46}{80}+\frac{55}{80}+\frac{7.1}{12}+\frac{1.1}{24}
Ko te maha noa iti rawa atu o 40 me 16 ko 80. Me tahuri \frac{23}{40} me \frac{11}{16} ki te hautau me te tautūnga 80.
\frac{46+55}{80}+\frac{7.1}{12}+\frac{1.1}{24}
Tā te mea he rite te tauraro o \frac{46}{80} me \frac{55}{80}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{101}{80}+\frac{7.1}{12}+\frac{1.1}{24}
Tāpirihia te 46 ki te 55, ka 101.
\frac{101}{80}+\frac{71}{120}+\frac{1.1}{24}
Whakarohaina te \frac{7.1}{12} mā te whakarea i te taurunga me te tauraro ki te 10.
\frac{303}{240}+\frac{142}{240}+\frac{1.1}{24}
Ko te maha noa iti rawa atu o 80 me 120 ko 240. Me tahuri \frac{101}{80} me \frac{71}{120} ki te hautau me te tautūnga 240.
\frac{303+142}{240}+\frac{1.1}{24}
Tā te mea he rite te tauraro o \frac{303}{240} me \frac{142}{240}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{445}{240}+\frac{1.1}{24}
Tāpirihia te 303 ki te 142, ka 445.
\frac{89}{48}+\frac{1.1}{24}
Whakahekea te hautanga \frac{445}{240} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 5.
\frac{89}{48}+\frac{11}{240}
Whakarohaina te \frac{1.1}{24} mā te whakarea i te taurunga me te tauraro ki te 10.
\frac{445}{240}+\frac{11}{240}
Ko te maha noa iti rawa atu o 48 me 240 ko 240. Me tahuri \frac{89}{48} me \frac{11}{240} ki te hautau me te tautūnga 240.
\frac{445+11}{240}
Tā te mea he rite te tauraro o \frac{445}{240} me \frac{11}{240}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{456}{240}
Tāpirihia te 445 ki te 11, ka 456.
\frac{19}{10}
Whakahekea te hautanga \frac{456}{240} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 24.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}