Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Whakaoti mō x (complex solution)
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

2.3^{2x+1}=54
Whakamahia ngā ture taupū me ngā taupū kōaro hei whakaoti i te whārite.
\log(2.3^{2x+1})=\log(54)
Tuhia te tau taupū kōaro o ngā taha e rua o te whārite.
\left(2x+1\right)\log(2.3)=\log(54)
Ko te taupū kōaro o tētahi tau ka hīkina ki tētahi pū ko te pū whakarea ki te taupū kōaro o taua tau.
2x+1=\frac{\log(54)}{\log(2.3)}
Whakawehea ngā taha e rua ki te \log(2.3).
2x+1=\log_{2.3}\left(54\right)
Mā te tikanga tātai huri pūtake \frac{\log(a)}{\log(b)}=\log_{b}\left(a\right).
2x=\frac{\ln(54)}{\ln(\frac{23}{10})}-1
Me tango 1 mai i ngā taha e rua o te whārite.
x=\frac{\frac{\ln(54)}{\ln(\frac{23}{10})}-1}{2}
Whakawehea ngā taha e rua ki te 2.