Whakaoti mō x
x=\frac{720256}{1084625}\approx 0.664059929
Graph
Tohaina
Kua tāruatia ki te papatopenga
2.25\times 9.8\times 1000\times 12\left(1+\frac{0.576}{x}\right)x+1000000=2000000x
Tē taea kia ōrite te tāupe x ki 0 nā te kore tautuhi i te whakawehenga mā te kore. Whakareatia ngā taha e rua o te whārite ki te x.
22.05\times 1000\times 12\left(1+\frac{0.576}{x}\right)x+1000000=2000000x
Whakareatia te 2.25 ki te 9.8, ka 22.05.
22050\times 12\left(1+\frac{0.576}{x}\right)x+1000000=2000000x
Whakareatia te 22.05 ki te 1000, ka 22050.
264600\left(1+\frac{0.576}{x}\right)x+1000000=2000000x
Whakareatia te 22050 ki te 12, ka 264600.
\left(264600+264600\times \frac{0.576}{x}\right)x+1000000=2000000x
Whakamahia te āhuatanga tohatoha hei whakarea te 264600 ki te 1+\frac{0.576}{x}.
264600x+264600\times \frac{0.576}{x}x+1000000=2000000x
Whakamahia te āhuatanga tohatoha hei whakarea te 264600+264600\times \frac{0.576}{x} ki te x.
264600x+264600\times \frac{0.576}{x}x+1000000-2000000x=0
Tangohia te 2000000x mai i ngā taha e rua.
-1735400x+264600\times \frac{0.576}{x}x+1000000=0
Pahekotia te 264600x me -2000000x, ka -1735400x.
-1735400x+264600\times \frac{0.576}{x}x=-1000000
Tangohia te 1000000 mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
-1735400xx+264600\times 0.576x=-1000000x
Tē taea kia ōrite te tāupe x ki 0 nā te kore tautuhi i te whakawehenga mā te kore. Whakareatia ngā taha e rua o te whārite ki te x.
-1735400x^{2}+264600\times 0.576x=-1000000x
Whakareatia te x ki te x, ka x^{2}.
-1735400x^{2}+152409.6x=-1000000x
Whakareatia te 264600 ki te 0.576, ka 152409.6.
-1735400x^{2}+152409.6x+1000000x=0
Me tāpiri te 1000000x ki ngā taha e rua.
-1735400x^{2}+1152409.6x=0
Pahekotia te 152409.6x me 1000000x, ka 1152409.6x.
x\left(-1735400x+1152409.6\right)=0
Tauwehea te x.
x=0 x=\frac{720256}{1084625}
Hei kimi otinga whārite, me whakaoti te x=0 me te -1735400x+1152409.6=0.
x=\frac{720256}{1084625}
Tē taea kia ōrite te tāupe x ki 0.
2.25\times 9.8\times 1000\times 12\left(1+\frac{0.576}{x}\right)x+1000000=2000000x
Tē taea kia ōrite te tāupe x ki 0 nā te kore tautuhi i te whakawehenga mā te kore. Whakareatia ngā taha e rua o te whārite ki te x.
22.05\times 1000\times 12\left(1+\frac{0.576}{x}\right)x+1000000=2000000x
Whakareatia te 2.25 ki te 9.8, ka 22.05.
22050\times 12\left(1+\frac{0.576}{x}\right)x+1000000=2000000x
Whakareatia te 22.05 ki te 1000, ka 22050.
264600\left(1+\frac{0.576}{x}\right)x+1000000=2000000x
Whakareatia te 22050 ki te 12, ka 264600.
\left(264600+264600\times \frac{0.576}{x}\right)x+1000000=2000000x
Whakamahia te āhuatanga tohatoha hei whakarea te 264600 ki te 1+\frac{0.576}{x}.
264600x+264600\times \frac{0.576}{x}x+1000000=2000000x
Whakamahia te āhuatanga tohatoha hei whakarea te 264600+264600\times \frac{0.576}{x} ki te x.
264600x+264600\times \frac{0.576}{x}x+1000000-2000000x=0
Tangohia te 2000000x mai i ngā taha e rua.
-1735400x+264600\times \frac{0.576}{x}x+1000000=0
Pahekotia te 264600x me -2000000x, ka -1735400x.
-1735400xx+264600\times 0.576x+x\times 1000000=0
Tē taea kia ōrite te tāupe x ki 0 nā te kore tautuhi i te whakawehenga mā te kore. Whakareatia ngā taha e rua o te whārite ki te x.
-1735400x^{2}+264600\times 0.576x+x\times 1000000=0
Whakareatia te x ki te x, ka x^{2}.
-1735400x^{2}+152409.6x+x\times 1000000=0
Whakareatia te 264600 ki te 0.576, ka 152409.6.
-1735400x^{2}+1152409.6x=0
Pahekotia te 152409.6x me x\times 1000000, ka 1152409.6x.
x=\frac{-1152409.6±\sqrt{1152409.6^{2}}}{2\left(-1735400\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -1735400 mō a, 1152409.6 mō b, me 0 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-1152409.6±\frac{5762048}{5}}{2\left(-1735400\right)}
Tuhia te pūtakerua o te 1152409.6^{2}.
x=\frac{-1152409.6±\frac{5762048}{5}}{-3470800}
Whakareatia 2 ki te -1735400.
x=\frac{0}{-3470800}
Nā, me whakaoti te whārite x=\frac{-1152409.6±\frac{5762048}{5}}{-3470800} ina he tāpiri te ±. Tāpiri -1152409.6 ki te \frac{5762048}{5} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=0
Whakawehe 0 ki te -3470800.
x=-\frac{\frac{11524096}{5}}{-3470800}
Nā, me whakaoti te whārite x=\frac{-1152409.6±\frac{5762048}{5}}{-3470800} ina he tango te ±. Tango \frac{5762048}{5} mai i -1152409.6 mā te kimi i te tauraro pātahi me te tango i ngā taurunga, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=\frac{720256}{1084625}
Whakawehe -\frac{11524096}{5} ki te -3470800.
x=0 x=\frac{720256}{1084625}
Kua oti te whārite te whakatau.
x=\frac{720256}{1084625}
Tē taea kia ōrite te tāupe x ki 0.
2.25\times 9.8\times 1000\times 12\left(1+\frac{0.576}{x}\right)x+1000000=2000000x
Tē taea kia ōrite te tāupe x ki 0 nā te kore tautuhi i te whakawehenga mā te kore. Whakareatia ngā taha e rua o te whārite ki te x.
22.05\times 1000\times 12\left(1+\frac{0.576}{x}\right)x+1000000=2000000x
Whakareatia te 2.25 ki te 9.8, ka 22.05.
22050\times 12\left(1+\frac{0.576}{x}\right)x+1000000=2000000x
Whakareatia te 22.05 ki te 1000, ka 22050.
264600\left(1+\frac{0.576}{x}\right)x+1000000=2000000x
Whakareatia te 22050 ki te 12, ka 264600.
\left(264600+264600\times \frac{0.576}{x}\right)x+1000000=2000000x
Whakamahia te āhuatanga tohatoha hei whakarea te 264600 ki te 1+\frac{0.576}{x}.
264600x+264600\times \frac{0.576}{x}x+1000000=2000000x
Whakamahia te āhuatanga tohatoha hei whakarea te 264600+264600\times \frac{0.576}{x} ki te x.
264600x+264600\times \frac{0.576}{x}x+1000000-2000000x=0
Tangohia te 2000000x mai i ngā taha e rua.
-1735400x+264600\times \frac{0.576}{x}x+1000000=0
Pahekotia te 264600x me -2000000x, ka -1735400x.
-1735400x+264600\times \frac{0.576}{x}x=-1000000
Tangohia te 1000000 mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
-1735400xx+264600\times 0.576x=-1000000x
Tē taea kia ōrite te tāupe x ki 0 nā te kore tautuhi i te whakawehenga mā te kore. Whakareatia ngā taha e rua o te whārite ki te x.
-1735400x^{2}+264600\times 0.576x=-1000000x
Whakareatia te x ki te x, ka x^{2}.
-1735400x^{2}+152409.6x=-1000000x
Whakareatia te 264600 ki te 0.576, ka 152409.6.
-1735400x^{2}+152409.6x+1000000x=0
Me tāpiri te 1000000x ki ngā taha e rua.
-1735400x^{2}+1152409.6x=0
Pahekotia te 152409.6x me 1000000x, ka 1152409.6x.
\frac{-1735400x^{2}+1152409.6x}{-1735400}=\frac{0}{-1735400}
Whakawehea ngā taha e rua ki te -1735400.
x^{2}+\frac{1152409.6}{-1735400}x=\frac{0}{-1735400}
Mā te whakawehe ki te -1735400 ka wetekia te whakareanga ki te -1735400.
x^{2}-\frac{720256}{1084625}x=\frac{0}{-1735400}
Whakawehe 1152409.6 ki te -1735400.
x^{2}-\frac{720256}{1084625}x=0
Whakawehe 0 ki te -1735400.
x^{2}-\frac{720256}{1084625}x+\left(-\frac{360128}{1084625}\right)^{2}=\left(-\frac{360128}{1084625}\right)^{2}
Whakawehea te -\frac{720256}{1084625}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{360128}{1084625}. Nā, tāpiria te pūrua o te -\frac{360128}{1084625} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-\frac{720256}{1084625}x+\frac{129692176384}{1176411390625}=\frac{129692176384}{1176411390625}
Pūruatia -\frac{360128}{1084625} mā te pūrua i te taurunga me te tauraro o te hautanga.
\left(x-\frac{360128}{1084625}\right)^{2}=\frac{129692176384}{1176411390625}
Tauwehea x^{2}-\frac{720256}{1084625}x+\frac{129692176384}{1176411390625}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{360128}{1084625}\right)^{2}}=\sqrt{\frac{129692176384}{1176411390625}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-\frac{360128}{1084625}=\frac{360128}{1084625} x-\frac{360128}{1084625}=-\frac{360128}{1084625}
Whakarūnātia.
x=\frac{720256}{1084625} x=0
Me tāpiri \frac{360128}{1084625} ki ngā taha e rua o te whārite.
x=\frac{720256}{1084625}
Tē taea kia ōrite te tāupe x ki 0.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}