Whakaoti mō x
x=\frac{4\sqrt{1151919782703430}}{537273503}+\frac{1360}{41328731}\approx 0.252715711
x=-\frac{4\sqrt{1151919782703430}}{537273503}+\frac{1360}{41328731}\approx -0.252649897
Graph
Tohaina
Kua tāruatia ki te papatopenga
9663.1925\times 695x^{2}-13\times 34x=428802
Me whakarea ngā taha e rua o te whārite ki te 4745, arā, te tauraro pātahi he tino iti rawa te kitea o 365,65.
6715918.7875x^{2}-13\times 34x=428802
Whakareatia te 9663.1925 ki te 695, ka 6715918.7875.
6715918.7875x^{2}-442x=428802
Whakareatia te -13 ki te 34, ka -442.
6715918.7875x^{2}-442x-428802=0
Tangohia te 428802 mai i ngā taha e rua.
x=\frac{-\left(-442\right)±\sqrt{\left(-442\right)^{2}-4\times 6715918.7875\left(-428802\right)}}{2\times 6715918.7875}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 6715918.7875 mō a, -442 mō b, me -428802 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-442\right)±\sqrt{195364-4\times 6715918.7875\left(-428802\right)}}{2\times 6715918.7875}
Pūrua -442.
x=\frac{-\left(-442\right)±\sqrt{195364-26863675.15\left(-428802\right)}}{2\times 6715918.7875}
Whakareatia -4 ki te 6715918.7875.
x=\frac{-\left(-442\right)±\sqrt{195364+11519197631670.3}}{2\times 6715918.7875}
Whakareatia -26863675.15 ki te -428802.
x=\frac{-\left(-442\right)±\sqrt{11519197827034.3}}{2\times 6715918.7875}
Tāpiri 195364 ki te 11519197631670.3.
x=\frac{-\left(-442\right)±\frac{\sqrt{1151919782703430}}{10}}{2\times 6715918.7875}
Tuhia te pūtakerua o te 11519197827034.3.
x=\frac{442±\frac{\sqrt{1151919782703430}}{10}}{2\times 6715918.7875}
Ko te tauaro o -442 ko 442.
x=\frac{442±\frac{\sqrt{1151919782703430}}{10}}{13431837.575}
Whakareatia 2 ki te 6715918.7875.
x=\frac{\frac{\sqrt{1151919782703430}}{10}+442}{13431837.575}
Nā, me whakaoti te whārite x=\frac{442±\frac{\sqrt{1151919782703430}}{10}}{13431837.575} ina he tāpiri te ±. Tāpiri 442 ki te \frac{\sqrt{1151919782703430}}{10}.
x=\frac{4\sqrt{1151919782703430}}{537273503}+\frac{1360}{41328731}
Whakawehe 442+\frac{\sqrt{1151919782703430}}{10} ki te 13431837.575 mā te whakarea 442+\frac{\sqrt{1151919782703430}}{10} ki te tau huripoki o 13431837.575.
x=\frac{-\frac{\sqrt{1151919782703430}}{10}+442}{13431837.575}
Nā, me whakaoti te whārite x=\frac{442±\frac{\sqrt{1151919782703430}}{10}}{13431837.575} ina he tango te ±. Tango \frac{\sqrt{1151919782703430}}{10} mai i 442.
x=-\frac{4\sqrt{1151919782703430}}{537273503}+\frac{1360}{41328731}
Whakawehe 442-\frac{\sqrt{1151919782703430}}{10} ki te 13431837.575 mā te whakarea 442-\frac{\sqrt{1151919782703430}}{10} ki te tau huripoki o 13431837.575.
x=\frac{4\sqrt{1151919782703430}}{537273503}+\frac{1360}{41328731} x=-\frac{4\sqrt{1151919782703430}}{537273503}+\frac{1360}{41328731}
Kua oti te whārite te whakatau.
9663.1925\times 695x^{2}-13\times 34x=428802
Me whakarea ngā taha e rua o te whārite ki te 4745, arā, te tauraro pātahi he tino iti rawa te kitea o 365,65.
6715918.7875x^{2}-13\times 34x=428802
Whakareatia te 9663.1925 ki te 695, ka 6715918.7875.
6715918.7875x^{2}-442x=428802
Whakareatia te -13 ki te 34, ka -442.
\frac{6715918.7875x^{2}-442x}{6715918.7875}=\frac{428802}{6715918.7875}
Whakawehea ngā taha e rua o te whārite ki te 6715918.7875, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x^{2}+\left(-\frac{442}{6715918.7875}\right)x=\frac{428802}{6715918.7875}
Mā te whakawehe ki te 6715918.7875 ka wetekia te whakareanga ki te 6715918.7875.
x^{2}-\frac{2720}{41328731}x=\frac{428802}{6715918.7875}
Whakawehe -442 ki te 6715918.7875 mā te whakarea -442 ki te tau huripoki o 6715918.7875.
x^{2}-\frac{2720}{41328731}x=\frac{469920}{7359911}
Whakawehe 428802 ki te 6715918.7875 mā te whakarea 428802 ki te tau huripoki o 6715918.7875.
x^{2}-\frac{2720}{41328731}x+\left(-\frac{1360}{41328731}\right)^{2}=\frac{469920}{7359911}+\left(-\frac{1360}{41328731}\right)^{2}
Whakawehea te -\frac{2720}{41328731}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{1360}{41328731}. Nā, tāpiria te pūrua o te -\frac{1360}{41328731} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-\frac{2720}{41328731}x+\frac{1849600}{1708064006070361}=\frac{469920}{7359911}+\frac{1849600}{1708064006070361}
Pūruatia -\frac{1360}{41328731} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}-\frac{2720}{41328731}x+\frac{1849600}{1708064006070361}=\frac{1417747424865760}{22204832078914693}
Tāpiri \frac{469920}{7359911} ki te \frac{1849600}{1708064006070361} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(x-\frac{1360}{41328731}\right)^{2}=\frac{1417747424865760}{22204832078914693}
Tauwehea x^{2}-\frac{2720}{41328731}x+\frac{1849600}{1708064006070361}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{1360}{41328731}\right)^{2}}=\sqrt{\frac{1417747424865760}{22204832078914693}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-\frac{1360}{41328731}=\frac{4\sqrt{1151919782703430}}{537273503} x-\frac{1360}{41328731}=-\frac{4\sqrt{1151919782703430}}{537273503}
Whakarūnātia.
x=\frac{4\sqrt{1151919782703430}}{537273503}+\frac{1360}{41328731} x=-\frac{4\sqrt{1151919782703430}}{537273503}+\frac{1360}{41328731}
Me tāpiri \frac{1360}{41328731} ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}