Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

2-x\left(3x-2x+4\right)=1-\left(x+1\right)\left(x-2\right)
Whakamahia te āhuatanga tohatoha hei whakarea te -2 ki te x-2.
2-x\left(x+4\right)=1-\left(x+1\right)\left(x-2\right)
Pahekotia te 3x me -2x, ka x.
2-\left(x^{2}+4x\right)=1-\left(x+1\right)\left(x-2\right)
Whakamahia te āhuatanga tohatoha hei whakarea te x ki te x+4.
2-x^{2}-4x=1-\left(x+1\right)\left(x-2\right)
Hei kimi i te tauaro o x^{2}+4x, kimihia te tauaro o ia taurangi.
2-x^{2}-4x=1-\left(x^{2}-x-2\right)
Whakamahia te āhuatanga tuaritanga hei whakarea te x+1 ki te x-2 ka whakakotahi i ngā kupu rite.
2-x^{2}-4x=1-x^{2}+x+2
Hei kimi i te tauaro o x^{2}-x-2, kimihia te tauaro o ia taurangi.
2-x^{2}-4x=3-x^{2}+x
Tāpirihia te 1 ki te 2, ka 3.
2-x^{2}-4x+x^{2}=3+x
Me tāpiri te x^{2} ki ngā taha e rua.
2-4x=3+x
Pahekotia te -x^{2} me x^{2}, ka 0.
2-4x-x=3
Tangohia te x mai i ngā taha e rua.
2-5x=3
Pahekotia te -4x me -x, ka -5x.
-5x=3-2
Tangohia te 2 mai i ngā taha e rua.
-5x=1
Tangohia te 2 i te 3, ka 1.
x=\frac{1}{-5}
Whakawehea ngā taha e rua ki te -5.
x=-\frac{1}{5}
Ka taea te hautanga \frac{1}{-5} te tuhi anō ko -\frac{1}{5} mā te tango i te tohu tōraro.