Whakaoti mō x
x=7
Graph
Tohaina
Kua tāruatia ki te papatopenga
16-6x-\left(2-7x\right)=12-\left(5-2x\right)
Whakamahia te āhuatanga tohatoha hei whakarea te 2 ki te 8-3x.
16-6x-2-\left(-7x\right)=12-\left(5-2x\right)
Hei kimi i te tauaro o 2-7x, kimihia te tauaro o ia taurangi.
16-6x-2+7x=12-\left(5-2x\right)
Ko te tauaro o -7x ko 7x.
14-6x+7x=12-\left(5-2x\right)
Tangohia te 2 i te 16, ka 14.
14+x=12-\left(5-2x\right)
Pahekotia te -6x me 7x, ka x.
14+x=12-5-\left(-2x\right)
Hei kimi i te tauaro o 5-2x, kimihia te tauaro o ia taurangi.
14+x=12-5+2x
Ko te tauaro o -2x ko 2x.
14+x=7+2x
Tangohia te 5 i te 12, ka 7.
14+x-2x=7
Tangohia te 2x mai i ngā taha e rua.
14-x=7
Pahekotia te x me -2x, ka -x.
-x=7-14
Tangohia te 14 mai i ngā taha e rua.
-x=-7
Tangohia te 14 i te 7, ka -7.
x=7
Me whakarea ngā taha e rua ki te -1.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}