Whakaoti mō x
x = \frac{17}{10} = 1\frac{7}{10} = 1.7
Graph
Tohaina
Kua tāruatia ki te papatopenga
8x+10-3\left(x-6\right)=5\times 3x+2\left(5x-3\right)
Whakamahia te āhuatanga tohatoha hei whakarea te 2 ki te 4x+5.
8x+10-3x+18=5\times 3x+2\left(5x-3\right)
Whakamahia te āhuatanga tohatoha hei whakarea te -3 ki te x-6.
5x+10+18=5\times 3x+2\left(5x-3\right)
Pahekotia te 8x me -3x, ka 5x.
5x+28=5\times 3x+2\left(5x-3\right)
Tāpirihia te 10 ki te 18, ka 28.
5x+28=15x+2\left(5x-3\right)
Whakareatia te 5 ki te 3, ka 15.
5x+28=15x+10x-6
Whakamahia te āhuatanga tohatoha hei whakarea te 2 ki te 5x-3.
5x+28=25x-6
Pahekotia te 15x me 10x, ka 25x.
5x+28-25x=-6
Tangohia te 25x mai i ngā taha e rua.
-20x+28=-6
Pahekotia te 5x me -25x, ka -20x.
-20x=-6-28
Tangohia te 28 mai i ngā taha e rua.
-20x=-34
Tangohia te 28 i te -6, ka -34.
x=\frac{-34}{-20}
Whakawehea ngā taha e rua ki te -20.
x=\frac{17}{10}
Whakahekea te hautanga \frac{-34}{-20} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te -2.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}