Whakaoti mō x
x=\frac{1}{2}=0.5
Graph
Tohaina
Kua tāruatia ki te papatopenga
6x-4+5=2-4\left(x-1\right)
Whakamahia te āhuatanga tohatoha hei whakarea te 2 ki te 3x-2.
6x+1=2-4\left(x-1\right)
Tāpirihia te -4 ki te 5, ka 1.
6x+1=2-4x+4
Whakamahia te āhuatanga tohatoha hei whakarea te -4 ki te x-1.
6x+1=6-4x
Tāpirihia te 2 ki te 4, ka 6.
6x+1+4x=6
Me tāpiri te 4x ki ngā taha e rua.
10x+1=6
Pahekotia te 6x me 4x, ka 10x.
10x=6-1
Tangohia te 1 mai i ngā taha e rua.
10x=5
Tangohia te 1 i te 6, ka 5.
x=\frac{5}{10}
Whakawehea ngā taha e rua ki te 10.
x=\frac{1}{2}
Whakahekea te hautanga \frac{5}{10} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 5.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}