Whakaoti mō x
x=1
Graph
Tohaina
Kua tāruatia ki te papatopenga
3x\left(2-4\right)+2x-5\left(x+1\right)=\frac{-28}{2}
Whakawehea ngā taha e rua ki te 2.
3x\left(2-4\right)+2x-5\left(x+1\right)=-14
Whakawehea te -28 ki te 2, kia riro ko -14.
3x\left(-2\right)+2x-5\left(x+1\right)=-14
Tangohia te 4 i te 2, ka -2.
-6x+2x-5\left(x+1\right)=-14
Whakareatia te 3 ki te -2, ka -6.
-4x-5\left(x+1\right)=-14
Pahekotia te -6x me 2x, ka -4x.
-4x-5x-5=-14
Whakamahia te āhuatanga tohatoha hei whakarea te -5 ki te x+1.
-9x-5=-14
Pahekotia te -4x me -5x, ka -9x.
-9x=-14+5
Me tāpiri te 5 ki ngā taha e rua.
-9x=-9
Tāpirihia te -14 ki te 5, ka -9.
x=\frac{-9}{-9}
Whakawehea ngā taha e rua ki te -9.
x=1
Whakawehea te -9 ki te -9, kia riro ko 1.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}