Whakaoti mō x
x=\frac{2\left(2-z\right)}{\sqrt{z^{2}-4z+8}}
Whakaoti mō z
z=-2\sqrt{-\frac{1}{x^{2}-4}}x+2
x>-2\text{ and }x<2
Tohaina
Kua tāruatia ki te papatopenga
4-2z=x\sqrt{\left(2-z\right)^{2}+4}
Whakamahia te āhuatanga tohatoha hei whakarea te 2 ki te 2-z.
4-2z=x\sqrt{4-4z+z^{2}+4}
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(2-z\right)^{2}.
4-2z=x\sqrt{8-4z+z^{2}}
Tāpirihia te 4 ki te 4, ka 8.
x\sqrt{8-4z+z^{2}}=4-2z
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
\sqrt{z^{2}-4z+8}x=4-2z
He hanga arowhānui tō te whārite.
\frac{\sqrt{z^{2}-4z+8}x}{\sqrt{z^{2}-4z+8}}=\frac{4-2z}{\sqrt{z^{2}-4z+8}}
Whakawehea ngā taha e rua ki te \sqrt{8-4z+z^{2}}.
x=\frac{4-2z}{\sqrt{z^{2}-4z+8}}
Mā te whakawehe ki te \sqrt{8-4z+z^{2}} ka wetekia te whakareanga ki te \sqrt{8-4z+z^{2}}.
x=\frac{2\left(2-z\right)}{\sqrt{z^{2}-4z+8}}
Whakawehe 4-2z ki te \sqrt{8-4z+z^{2}}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}