Whakaoti mō x
x=\sqrt{5}+2\approx 4.236067977
x=2-\sqrt{5}\approx -0.236067977
Graph
Tohaina
Kua tāruatia ki te papatopenga
2\left(3x+1\right)=x\times 2\left(x-1\right)
Tē taea kia ōrite te tāupe x ki 1 nā te kore tautuhi i te whakawehenga mā te kore. Whakareatia ngā taha e rua o te whārite ki te 2\left(x-1\right).
6x+2=x\times 2\left(x-1\right)
Whakamahia te āhuatanga tohatoha hei whakarea te 2 ki te 3x+1.
6x+2=2x^{2}-x\times 2
Whakamahia te āhuatanga tohatoha hei whakarea te x\times 2 ki te x-1.
6x+2=2x^{2}-2x
Whakareatia te -1 ki te 2, ka -2.
6x+2-2x^{2}=-2x
Tangohia te 2x^{2} mai i ngā taha e rua.
6x+2-2x^{2}+2x=0
Me tāpiri te 2x ki ngā taha e rua.
8x+2-2x^{2}=0
Pahekotia te 6x me 2x, ka 8x.
-2x^{2}+8x+2=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-8±\sqrt{8^{2}-4\left(-2\right)\times 2}}{2\left(-2\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -2 mō a, 8 mō b, me 2 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-8±\sqrt{64-4\left(-2\right)\times 2}}{2\left(-2\right)}
Pūrua 8.
x=\frac{-8±\sqrt{64+8\times 2}}{2\left(-2\right)}
Whakareatia -4 ki te -2.
x=\frac{-8±\sqrt{64+16}}{2\left(-2\right)}
Whakareatia 8 ki te 2.
x=\frac{-8±\sqrt{80}}{2\left(-2\right)}
Tāpiri 64 ki te 16.
x=\frac{-8±4\sqrt{5}}{2\left(-2\right)}
Tuhia te pūtakerua o te 80.
x=\frac{-8±4\sqrt{5}}{-4}
Whakareatia 2 ki te -2.
x=\frac{4\sqrt{5}-8}{-4}
Nā, me whakaoti te whārite x=\frac{-8±4\sqrt{5}}{-4} ina he tāpiri te ±. Tāpiri -8 ki te 4\sqrt{5}.
x=2-\sqrt{5}
Whakawehe -8+4\sqrt{5} ki te -4.
x=\frac{-4\sqrt{5}-8}{-4}
Nā, me whakaoti te whārite x=\frac{-8±4\sqrt{5}}{-4} ina he tango te ±. Tango 4\sqrt{5} mai i -8.
x=\sqrt{5}+2
Whakawehe -8-4\sqrt{5} ki te -4.
x=2-\sqrt{5} x=\sqrt{5}+2
Kua oti te whārite te whakatau.
2\left(3x+1\right)=x\times 2\left(x-1\right)
Tē taea kia ōrite te tāupe x ki 1 nā te kore tautuhi i te whakawehenga mā te kore. Whakareatia ngā taha e rua o te whārite ki te 2\left(x-1\right).
6x+2=x\times 2\left(x-1\right)
Whakamahia te āhuatanga tohatoha hei whakarea te 2 ki te 3x+1.
6x+2=2x^{2}-x\times 2
Whakamahia te āhuatanga tohatoha hei whakarea te x\times 2 ki te x-1.
6x+2=2x^{2}-2x
Whakareatia te -1 ki te 2, ka -2.
6x+2-2x^{2}=-2x
Tangohia te 2x^{2} mai i ngā taha e rua.
6x+2-2x^{2}+2x=0
Me tāpiri te 2x ki ngā taha e rua.
8x+2-2x^{2}=0
Pahekotia te 6x me 2x, ka 8x.
8x-2x^{2}=-2
Tangohia te 2 mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
-2x^{2}+8x=-2
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
\frac{-2x^{2}+8x}{-2}=-\frac{2}{-2}
Whakawehea ngā taha e rua ki te -2.
x^{2}+\frac{8}{-2}x=-\frac{2}{-2}
Mā te whakawehe ki te -2 ka wetekia te whakareanga ki te -2.
x^{2}-4x=-\frac{2}{-2}
Whakawehe 8 ki te -2.
x^{2}-4x=1
Whakawehe -2 ki te -2.
x^{2}-4x+\left(-2\right)^{2}=1+\left(-2\right)^{2}
Whakawehea te -4, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -2. Nā, tāpiria te pūrua o te -2 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-4x+4=1+4
Pūrua -2.
x^{2}-4x+4=5
Tāpiri 1 ki te 4.
\left(x-2\right)^{2}=5
Tauwehea x^{2}-4x+4. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-2\right)^{2}}=\sqrt{5}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-2=\sqrt{5} x-2=-\sqrt{5}
Whakarūnātia.
x=\sqrt{5}+2 x=2-\sqrt{5}
Me tāpiri 2 ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}