Aromātai
\frac{16}{3}\approx 5.333333333
Tauwehe
\frac{2 ^ {4}}{3} = 5\frac{1}{3} = 5.333333333333333
Tohaina
Kua tāruatia ki te papatopenga
\frac{2\times 3}{4}+\frac{13}{8}+\frac{23}{10}-3\times \frac{5}{24}+1\times \frac{8}{15}
Tuhia te 2\times \frac{3}{4} hei hautanga kotahi.
\frac{6}{4}+\frac{13}{8}+\frac{23}{10}-3\times \frac{5}{24}+1\times \frac{8}{15}
Whakareatia te 2 ki te 3, ka 6.
\frac{3}{2}+\frac{13}{8}+\frac{23}{10}-3\times \frac{5}{24}+1\times \frac{8}{15}
Whakahekea te hautanga \frac{6}{4} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
\frac{12}{8}+\frac{13}{8}+\frac{23}{10}-3\times \frac{5}{24}+1\times \frac{8}{15}
Ko te maha noa iti rawa atu o 2 me 8 ko 8. Me tahuri \frac{3}{2} me \frac{13}{8} ki te hautau me te tautūnga 8.
\frac{12+13}{8}+\frac{23}{10}-3\times \frac{5}{24}+1\times \frac{8}{15}
Tā te mea he rite te tauraro o \frac{12}{8} me \frac{13}{8}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{25}{8}+\frac{23}{10}-3\times \frac{5}{24}+1\times \frac{8}{15}
Tāpirihia te 12 ki te 13, ka 25.
\frac{125}{40}+\frac{92}{40}-3\times \frac{5}{24}+1\times \frac{8}{15}
Ko te maha noa iti rawa atu o 8 me 10 ko 40. Me tahuri \frac{25}{8} me \frac{23}{10} ki te hautau me te tautūnga 40.
\frac{125+92}{40}-3\times \frac{5}{24}+1\times \frac{8}{15}
Tā te mea he rite te tauraro o \frac{125}{40} me \frac{92}{40}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{217}{40}-3\times \frac{5}{24}+1\times \frac{8}{15}
Tāpirihia te 125 ki te 92, ka 217.
\frac{217}{40}-\frac{3\times 5}{24}+1\times \frac{8}{15}
Tuhia te 3\times \frac{5}{24} hei hautanga kotahi.
\frac{217}{40}-\frac{15}{24}+1\times \frac{8}{15}
Whakareatia te 3 ki te 5, ka 15.
\frac{217}{40}-\frac{5}{8}+1\times \frac{8}{15}
Whakahekea te hautanga \frac{15}{24} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 3.
\frac{217}{40}-\frac{25}{40}+1\times \frac{8}{15}
Ko te maha noa iti rawa atu o 40 me 8 ko 40. Me tahuri \frac{217}{40} me \frac{5}{8} ki te hautau me te tautūnga 40.
\frac{217-25}{40}+1\times \frac{8}{15}
Tā te mea he rite te tauraro o \frac{217}{40} me \frac{25}{40}, me tango rāua mā te tango i ō raua taurunga.
\frac{192}{40}+1\times \frac{8}{15}
Tangohia te 25 i te 217, ka 192.
\frac{24}{5}+1\times \frac{8}{15}
Whakahekea te hautanga \frac{192}{40} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 8.
\frac{24}{5}+\frac{8}{15}
Whakareatia te 1 ki te \frac{8}{15}, ka \frac{8}{15}.
\frac{72}{15}+\frac{8}{15}
Ko te maha noa iti rawa atu o 5 me 15 ko 15. Me tahuri \frac{24}{5} me \frac{8}{15} ki te hautau me te tautūnga 15.
\frac{72+8}{15}
Tā te mea he rite te tauraro o \frac{72}{15} me \frac{8}{15}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{80}{15}
Tāpirihia te 72 ki te 8, ka 80.
\frac{16}{3}
Whakahekea te hautanga \frac{80}{15} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 5.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}