Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{2}{4}=x^{2}-\frac{7}{4}
Whakawehea ngā taha e rua ki te 4.
\frac{1}{2}=x^{2}-\frac{7}{4}
Whakahekea te hautanga \frac{2}{4} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
x^{2}-\frac{7}{4}=\frac{1}{2}
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
x^{2}-\frac{7}{4}-\frac{1}{2}=0
Tangohia te \frac{1}{2} mai i ngā taha e rua.
x^{2}-\frac{9}{4}=0
Tangohia te \frac{1}{2} i te -\frac{7}{4}, ka -\frac{9}{4}.
4x^{2}-9=0
Me whakarea ngā taha e rua ki te 4.
\left(2x-3\right)\left(2x+3\right)=0
Whakaarohia te 4x^{2}-9. Tuhia anō te 4x^{2}-9 hei \left(2x\right)^{2}-3^{2}. Ka taea te rerekētanga o ngā pūrua te whakatauwehe mā te ture: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
x=\frac{3}{2} x=-\frac{3}{2}
Hei kimi otinga whārite, me whakaoti te 2x-3=0 me te 2x+3=0.
\frac{2}{4}=x^{2}-\frac{7}{4}
Whakawehea ngā taha e rua ki te 4.
\frac{1}{2}=x^{2}-\frac{7}{4}
Whakahekea te hautanga \frac{2}{4} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
x^{2}-\frac{7}{4}=\frac{1}{2}
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
x^{2}=\frac{1}{2}+\frac{7}{4}
Me tāpiri te \frac{7}{4} ki ngā taha e rua.
x^{2}=\frac{9}{4}
Tāpirihia te \frac{1}{2} ki te \frac{7}{4}, ka \frac{9}{4}.
x=\frac{3}{2} x=-\frac{3}{2}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
\frac{2}{4}=x^{2}-\frac{7}{4}
Whakawehea ngā taha e rua ki te 4.
\frac{1}{2}=x^{2}-\frac{7}{4}
Whakahekea te hautanga \frac{2}{4} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
x^{2}-\frac{7}{4}=\frac{1}{2}
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
x^{2}-\frac{7}{4}-\frac{1}{2}=0
Tangohia te \frac{1}{2} mai i ngā taha e rua.
x^{2}-\frac{9}{4}=0
Tangohia te \frac{1}{2} i te -\frac{7}{4}, ka -\frac{9}{4}.
x=\frac{0±\sqrt{0^{2}-4\left(-\frac{9}{4}\right)}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, 0 mō b, me -\frac{9}{4} mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\left(-\frac{9}{4}\right)}}{2}
Pūrua 0.
x=\frac{0±\sqrt{9}}{2}
Whakareatia -4 ki te -\frac{9}{4}.
x=\frac{0±3}{2}
Tuhia te pūtakerua o te 9.
x=\frac{3}{2}
Nā, me whakaoti te whārite x=\frac{0±3}{2} ina he tāpiri te ±. Whakawehe 3 ki te 2.
x=-\frac{3}{2}
Nā, me whakaoti te whārite x=\frac{0±3}{2} ina he tango te ±. Whakawehe -3 ki te 2.
x=\frac{3}{2} x=-\frac{3}{2}
Kua oti te whārite te whakatau.