Aromātai
\frac{451}{200}=2.255
Tauwehe
\frac{11 \cdot 41}{2 ^ {3} \cdot 5 ^ {2}} = 2\frac{51}{200} = 2.255
Tohaina
Kua tāruatia ki te papatopenga
2+\frac{1}{4}+\frac{18}{3600}
Whakahekea te hautanga \frac{15}{60} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 15.
\frac{8}{4}+\frac{1}{4}+\frac{18}{3600}
Me tahuri te 2 ki te hautau \frac{8}{4}.
\frac{8+1}{4}+\frac{18}{3600}
Tā te mea he rite te tauraro o \frac{8}{4} me \frac{1}{4}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{9}{4}+\frac{18}{3600}
Tāpirihia te 8 ki te 1, ka 9.
\frac{9}{4}+\frac{1}{200}
Whakahekea te hautanga \frac{18}{3600} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 18.
\frac{450}{200}+\frac{1}{200}
Ko te maha noa iti rawa atu o 4 me 200 ko 200. Me tahuri \frac{9}{4} me \frac{1}{200} ki te hautau me te tautūnga 200.
\frac{450+1}{200}
Tā te mea he rite te tauraro o \frac{450}{200} me \frac{1}{200}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{451}{200}
Tāpirihia te 450 ki te 1, ka 451.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}