Aromātai
-\frac{3f}{2}+12
Kimi Pārōnaki e ai ki f
-1.5
Pātaitai
Polynomial
2+1.25f+10-2.75f
Tohaina
Kua tāruatia ki te papatopenga
12+1.25f-2.75f
Tāpirihia te 2 ki te 10, ka 12.
12-1.5f
Pahekotia te 1.25f me -2.75f, ka -1.5f.
\frac{\mathrm{d}}{\mathrm{d}f}(12+1.25f-2.75f)
Tāpirihia te 2 ki te 10, ka 12.
\frac{\mathrm{d}}{\mathrm{d}f}(12-1.5f)
Pahekotia te 1.25f me -2.75f, ka -1.5f.
-1.5f^{1-1}
Ko te pārōnaki o tētahi pūrau ko te tapeke o ngā pārōnaki o ōna kīanga tau. Ko te pārōnaki o tētahi kīanga tau pūmau ko 0. Ko te pārōnaki o te ax^{n} ko te nax^{n-1}.
-1.5f^{0}
Tango 1 mai i 1.
-1.5
Mō tētahi kupu t mahue te 0, t^{0}=1.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}