Whakaoti mō z
z=\frac{1}{2}+\frac{3}{2}i=0.5+1.5i
z=\frac{1}{2}-\frac{3}{2}i=0.5-1.5i
Tohaina
Kua tāruatia ki te papatopenga
2z^{2}-2z+5=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
z=\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}-4\times 2\times 5}}{2\times 2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 2 mō a, -2 mō b, me 5 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
z=\frac{-\left(-2\right)±\sqrt{4-4\times 2\times 5}}{2\times 2}
Pūrua -2.
z=\frac{-\left(-2\right)±\sqrt{4-8\times 5}}{2\times 2}
Whakareatia -4 ki te 2.
z=\frac{-\left(-2\right)±\sqrt{4-40}}{2\times 2}
Whakareatia -8 ki te 5.
z=\frac{-\left(-2\right)±\sqrt{-36}}{2\times 2}
Tāpiri 4 ki te -40.
z=\frac{-\left(-2\right)±6i}{2\times 2}
Tuhia te pūtakerua o te -36.
z=\frac{2±6i}{2\times 2}
Ko te tauaro o -2 ko 2.
z=\frac{2±6i}{4}
Whakareatia 2 ki te 2.
z=\frac{2+6i}{4}
Nā, me whakaoti te whārite z=\frac{2±6i}{4} ina he tāpiri te ±. Tāpiri 2 ki te 6i.
z=\frac{1}{2}+\frac{3}{2}i
Whakawehe 2+6i ki te 4.
z=\frac{2-6i}{4}
Nā, me whakaoti te whārite z=\frac{2±6i}{4} ina he tango te ±. Tango 6i mai i 2.
z=\frac{1}{2}-\frac{3}{2}i
Whakawehe 2-6i ki te 4.
z=\frac{1}{2}+\frac{3}{2}i z=\frac{1}{2}-\frac{3}{2}i
Kua oti te whārite te whakatau.
2z^{2}-2z+5=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
2z^{2}-2z+5-5=-5
Me tango 5 mai i ngā taha e rua o te whārite.
2z^{2}-2z=-5
Mā te tango i te 5 i a ia ake anō ka toe ko te 0.
\frac{2z^{2}-2z}{2}=-\frac{5}{2}
Whakawehea ngā taha e rua ki te 2.
z^{2}+\left(-\frac{2}{2}\right)z=-\frac{5}{2}
Mā te whakawehe ki te 2 ka wetekia te whakareanga ki te 2.
z^{2}-z=-\frac{5}{2}
Whakawehe -2 ki te 2.
z^{2}-z+\left(-\frac{1}{2}\right)^{2}=-\frac{5}{2}+\left(-\frac{1}{2}\right)^{2}
Whakawehea te -1, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{1}{2}. Nā, tāpiria te pūrua o te -\frac{1}{2} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
z^{2}-z+\frac{1}{4}=-\frac{5}{2}+\frac{1}{4}
Pūruatia -\frac{1}{2} mā te pūrua i te taurunga me te tauraro o te hautanga.
z^{2}-z+\frac{1}{4}=-\frac{9}{4}
Tāpiri -\frac{5}{2} ki te \frac{1}{4} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(z-\frac{1}{2}\right)^{2}=-\frac{9}{4}
Tauwehea z^{2}-z+\frac{1}{4}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(z-\frac{1}{2}\right)^{2}}=\sqrt{-\frac{9}{4}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
z-\frac{1}{2}=\frac{3}{2}i z-\frac{1}{2}=-\frac{3}{2}i
Whakarūnātia.
z=\frac{1}{2}+\frac{3}{2}i z=\frac{1}{2}-\frac{3}{2}i
Me tāpiri \frac{1}{2} ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}