Whakaoti mō z
z=\frac{\sqrt{2}}{2}+\left(-\frac{1}{2}+\frac{1}{2}i\right)\approx 0.207106781+0.5i
z=-\frac{1}{2}+\frac{1}{2}i-\frac{\sqrt{2}}{2}\approx -1.207106781+0.5i
Tohaina
Kua tāruatia ki te papatopenga
2z\left(z+1\right)=1-i+\left(z+1\right)\times \left(2i\right)
Tē taea kia ōrite te tāupe z ki -1 nā te kore tautuhi i te whakawehenga mā te kore. Whakareatia ngā taha e rua o te whārite ki te z+1.
2z^{2}+2z=1-i+\left(z+1\right)\times \left(2i\right)
Whakamahia te āhuatanga tohatoha hei whakarea te 2z ki te z+1.
2z^{2}+2z=1-i+2iz+2i
Whakamahia te āhuatanga tohatoha hei whakarea te z+1 ki te 2i.
2z^{2}+2z=2iz+1+i
Mahia ngā tāpiri i roto o 1-i+2i.
2z^{2}+2z-2iz=1+i
Tangohia te 2iz mai i ngā taha e rua.
2z^{2}+\left(2-2i\right)z=1+i
Pahekotia te 2z me -2iz, ka \left(2-2i\right)z.
2z^{2}+\left(2-2i\right)z-\left(1+i\right)=0
Tangohia te 1+i mai i ngā taha e rua.
2z^{2}+\left(2-2i\right)z+\left(-1-i\right)=0
Whakareatia te -1 ki te 1+i, ka -1-i.
z=\frac{-2+2i±\sqrt{\left(2-2i\right)^{2}-4\times 2\left(-1-i\right)}}{2\times 2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 2 mō a, 2-2i mō b, me -1-i mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
z=\frac{-2+2i±\sqrt{-8i-4\times 2\left(-1-i\right)}}{2\times 2}
Pūrua 2-2i.
z=\frac{-2+2i±\sqrt{-8i-8\left(-1-i\right)}}{2\times 2}
Whakareatia -4 ki te 2.
z=\frac{-2+2i±\sqrt{-8i+\left(8+8i\right)}}{2\times 2}
Whakareatia -8 ki te -1-i.
z=\frac{-2+2i±\sqrt{8}}{2\times 2}
Tāpiri -8i ki te 8+8i.
z=\frac{-2+2i±2\sqrt{2}}{2\times 2}
Tuhia te pūtakerua o te 8.
z=\frac{-2+2i±2\sqrt{2}}{4}
Whakareatia 2 ki te 2.
z=\frac{-2+2i+2\sqrt{2}}{4}
Nā, me whakaoti te whārite z=\frac{-2+2i±2\sqrt{2}}{4} ina he tāpiri te ±. Tāpiri -2+2i ki te 2\sqrt{2}.
z=\frac{\sqrt{2}}{2}+\left(-\frac{1}{2}+\frac{1}{2}i\right)
Whakawehe -2+2i+2\sqrt{2} ki te 4.
z=\frac{-2+2i-2\sqrt{2}}{4}
Nā, me whakaoti te whārite z=\frac{-2+2i±2\sqrt{2}}{4} ina he tango te ±. Tango 2\sqrt{2} mai i -2+2i.
z=-\frac{1}{2}+\frac{1}{2}i-\frac{\sqrt{2}}{2}
Whakawehe -2+2i-2\sqrt{2} ki te 4.
z=\frac{\sqrt{2}}{2}+\left(-\frac{1}{2}+\frac{1}{2}i\right) z=-\frac{1}{2}+\frac{1}{2}i-\frac{\sqrt{2}}{2}
Kua oti te whārite te whakatau.
2z\left(z+1\right)=1-i+\left(z+1\right)\times \left(2i\right)
Tē taea kia ōrite te tāupe z ki -1 nā te kore tautuhi i te whakawehenga mā te kore. Whakareatia ngā taha e rua o te whārite ki te z+1.
2z^{2}+2z=1-i+\left(z+1\right)\times \left(2i\right)
Whakamahia te āhuatanga tohatoha hei whakarea te 2z ki te z+1.
2z^{2}+2z=1-i+2iz+2i
Whakamahia te āhuatanga tohatoha hei whakarea te z+1 ki te 2i.
2z^{2}+2z=2iz+1+i
Mahia ngā tāpiri i roto o 1-i+2i.
2z^{2}+2z-2iz=1+i
Tangohia te 2iz mai i ngā taha e rua.
2z^{2}+\left(2-2i\right)z=1+i
Pahekotia te 2z me -2iz, ka \left(2-2i\right)z.
\frac{2z^{2}+\left(2-2i\right)z}{2}=\frac{1+i}{2}
Whakawehea ngā taha e rua ki te 2.
z^{2}+\frac{2-2i}{2}z=\frac{1+i}{2}
Mā te whakawehe ki te 2 ka wetekia te whakareanga ki te 2.
z^{2}+\left(1-i\right)z=\frac{1+i}{2}
Whakawehe 2-2i ki te 2.
z^{2}+\left(1-i\right)z=\frac{1}{2}+\frac{1}{2}i
Whakawehe 1+i ki te 2.
z^{2}+\left(1-i\right)z+\left(\frac{1}{2}-\frac{1}{2}i\right)^{2}=\frac{1}{2}+\frac{1}{2}i+\left(\frac{1}{2}-\frac{1}{2}i\right)^{2}
Whakawehea te 1-i, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te \frac{1}{2}-\frac{1}{2}i. Nā, tāpiria te pūrua o te \frac{1}{2}-\frac{1}{2}i ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
z^{2}+\left(1-i\right)z-\frac{1}{2}i=\frac{1}{2}+\frac{1}{2}i-\frac{1}{2}i
Pūrua \frac{1}{2}-\frac{1}{2}i.
z^{2}+\left(1-i\right)z-\frac{1}{2}i=\frac{1}{2}
Tāpiri \frac{1}{2}+\frac{1}{2}i ki te -\frac{1}{2}i.
\left(z+\left(\frac{1}{2}-\frac{1}{2}i\right)\right)^{2}=\frac{1}{2}
Tauwehea z^{2}+\left(1-i\right)z-\frac{1}{2}i. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(z+\left(\frac{1}{2}-\frac{1}{2}i\right)\right)^{2}}=\sqrt{\frac{1}{2}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
z+\left(\frac{1}{2}-\frac{1}{2}i\right)=\frac{\sqrt{2}}{2} z+\left(\frac{1}{2}-\frac{1}{2}i\right)=-\frac{\sqrt{2}}{2}
Whakarūnātia.
z=\frac{\sqrt{2}}{2}+\left(-\frac{1}{2}+\frac{1}{2}i\right) z=-\frac{1}{2}+\frac{1}{2}i-\frac{\sqrt{2}}{2}
Me tango \frac{1}{2}-\frac{1}{2}i mai i ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}