Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Whakaoti mō y_1
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

2y_{1}x-\frac{2}{3}y_{1}-\sqrt{2}=0
Whakamahia te āhuatanga tohatoha hei whakarea te 2y_{1} ki te x-\frac{1}{3}.
2y_{1}x-\sqrt{2}=\frac{2}{3}y_{1}
Me tāpiri te \frac{2}{3}y_{1} ki ngā taha e rua. Ko te tau i tāpiria he kore ka hua koia tonu.
2y_{1}x=\frac{2}{3}y_{1}+\sqrt{2}
Me tāpiri te \sqrt{2} ki ngā taha e rua.
2y_{1}x=\frac{2y_{1}}{3}+\sqrt{2}
He hanga arowhānui tō te whārite.
\frac{2y_{1}x}{2y_{1}}=\frac{\frac{2y_{1}}{3}+\sqrt{2}}{2y_{1}}
Whakawehea ngā taha e rua ki te 2y_{1}.
x=\frac{\frac{2y_{1}}{3}+\sqrt{2}}{2y_{1}}
Mā te whakawehe ki te 2y_{1} ka wetekia te whakareanga ki te 2y_{1}.
x=\frac{1}{3}+\frac{\sqrt{2}}{2y_{1}}
Whakawehe \frac{2y_{1}}{3}+\sqrt{2} ki te 2y_{1}.
2y_{1}x-\frac{2}{3}y_{1}-\sqrt{2}=0
Whakamahia te āhuatanga tohatoha hei whakarea te 2y_{1} ki te x-\frac{1}{3}.
2y_{1}x-\frac{2}{3}y_{1}=\sqrt{2}
Me tāpiri te \sqrt{2} ki ngā taha e rua. Ko te tau i tāpiria he kore ka hua koia tonu.
\left(2x-\frac{2}{3}\right)y_{1}=\sqrt{2}
Pahekotia ngā kīanga tau katoa e whai ana i te y_{1}.
\frac{\left(2x-\frac{2}{3}\right)y_{1}}{2x-\frac{2}{3}}=\frac{\sqrt{2}}{2x-\frac{2}{3}}
Whakawehea ngā taha e rua ki te 2x-\frac{2}{3}.
y_{1}=\frac{\sqrt{2}}{2x-\frac{2}{3}}
Mā te whakawehe ki te 2x-\frac{2}{3} ka wetekia te whakareanga ki te 2x-\frac{2}{3}.
y_{1}=\frac{3\sqrt{2}}{2\left(3x-1\right)}
Whakawehe \sqrt{2} ki te 2x-\frac{2}{3}.