Whakaoti mō y
y=\frac{1+\sqrt{15}i}{4}\approx 0.25+0.968245837i
y=\frac{-\sqrt{15}i+1}{4}\approx 0.25-0.968245837i
Tohaina
Kua tāruatia ki te papatopenga
2y^{2}-y+2=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
y=\frac{-\left(-1\right)±\sqrt{1-4\times 2\times 2}}{2\times 2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 2 mō a, -1 mō b, me 2 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{-\left(-1\right)±\sqrt{1-8\times 2}}{2\times 2}
Whakareatia -4 ki te 2.
y=\frac{-\left(-1\right)±\sqrt{1-16}}{2\times 2}
Whakareatia -8 ki te 2.
y=\frac{-\left(-1\right)±\sqrt{-15}}{2\times 2}
Tāpiri 1 ki te -16.
y=\frac{-\left(-1\right)±\sqrt{15}i}{2\times 2}
Tuhia te pūtakerua o te -15.
y=\frac{1±\sqrt{15}i}{2\times 2}
Ko te tauaro o -1 ko 1.
y=\frac{1±\sqrt{15}i}{4}
Whakareatia 2 ki te 2.
y=\frac{1+\sqrt{15}i}{4}
Nā, me whakaoti te whārite y=\frac{1±\sqrt{15}i}{4} ina he tāpiri te ±. Tāpiri 1 ki te i\sqrt{15}.
y=\frac{-\sqrt{15}i+1}{4}
Nā, me whakaoti te whārite y=\frac{1±\sqrt{15}i}{4} ina he tango te ±. Tango i\sqrt{15} mai i 1.
y=\frac{1+\sqrt{15}i}{4} y=\frac{-\sqrt{15}i+1}{4}
Kua oti te whārite te whakatau.
2y^{2}-y+2=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
2y^{2}-y+2-2=-2
Me tango 2 mai i ngā taha e rua o te whārite.
2y^{2}-y=-2
Mā te tango i te 2 i a ia ake anō ka toe ko te 0.
\frac{2y^{2}-y}{2}=-\frac{2}{2}
Whakawehea ngā taha e rua ki te 2.
y^{2}-\frac{1}{2}y=-\frac{2}{2}
Mā te whakawehe ki te 2 ka wetekia te whakareanga ki te 2.
y^{2}-\frac{1}{2}y=-1
Whakawehe -2 ki te 2.
y^{2}-\frac{1}{2}y+\left(-\frac{1}{4}\right)^{2}=-1+\left(-\frac{1}{4}\right)^{2}
Whakawehea te -\frac{1}{2}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{1}{4}. Nā, tāpiria te pūrua o te -\frac{1}{4} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
y^{2}-\frac{1}{2}y+\frac{1}{16}=-1+\frac{1}{16}
Pūruatia -\frac{1}{4} mā te pūrua i te taurunga me te tauraro o te hautanga.
y^{2}-\frac{1}{2}y+\frac{1}{16}=-\frac{15}{16}
Tāpiri -1 ki te \frac{1}{16}.
\left(y-\frac{1}{4}\right)^{2}=-\frac{15}{16}
Tauwehea y^{2}-\frac{1}{2}y+\frac{1}{16}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(y-\frac{1}{4}\right)^{2}}=\sqrt{-\frac{15}{16}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
y-\frac{1}{4}=\frac{\sqrt{15}i}{4} y-\frac{1}{4}=-\frac{\sqrt{15}i}{4}
Whakarūnātia.
y=\frac{1+\sqrt{15}i}{4} y=\frac{-\sqrt{15}i+1}{4}
Me tāpiri \frac{1}{4} ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}