Whakaoti mō y
y = \frac{\sqrt{41} - 1}{4} \approx 1.350781059
y=\frac{-\sqrt{41}-1}{4}\approx -1.850781059
Graph
Tohaina
Kua tāruatia ki te papatopenga
2y^{2}+y-5=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
y=\frac{-1±\sqrt{1^{2}-4\times 2\left(-5\right)}}{2\times 2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 2 mō a, 1 mō b, me -5 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{-1±\sqrt{1-4\times 2\left(-5\right)}}{2\times 2}
Pūrua 1.
y=\frac{-1±\sqrt{1-8\left(-5\right)}}{2\times 2}
Whakareatia -4 ki te 2.
y=\frac{-1±\sqrt{1+40}}{2\times 2}
Whakareatia -8 ki te -5.
y=\frac{-1±\sqrt{41}}{2\times 2}
Tāpiri 1 ki te 40.
y=\frac{-1±\sqrt{41}}{4}
Whakareatia 2 ki te 2.
y=\frac{\sqrt{41}-1}{4}
Nā, me whakaoti te whārite y=\frac{-1±\sqrt{41}}{4} ina he tāpiri te ±. Tāpiri -1 ki te \sqrt{41}.
y=\frac{-\sqrt{41}-1}{4}
Nā, me whakaoti te whārite y=\frac{-1±\sqrt{41}}{4} ina he tango te ±. Tango \sqrt{41} mai i -1.
y=\frac{\sqrt{41}-1}{4} y=\frac{-\sqrt{41}-1}{4}
Kua oti te whārite te whakatau.
2y^{2}+y-5=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
2y^{2}+y-5-\left(-5\right)=-\left(-5\right)
Me tāpiri 5 ki ngā taha e rua o te whārite.
2y^{2}+y=-\left(-5\right)
Mā te tango i te -5 i a ia ake anō ka toe ko te 0.
2y^{2}+y=5
Tango -5 mai i 0.
\frac{2y^{2}+y}{2}=\frac{5}{2}
Whakawehea ngā taha e rua ki te 2.
y^{2}+\frac{1}{2}y=\frac{5}{2}
Mā te whakawehe ki te 2 ka wetekia te whakareanga ki te 2.
y^{2}+\frac{1}{2}y+\left(\frac{1}{4}\right)^{2}=\frac{5}{2}+\left(\frac{1}{4}\right)^{2}
Whakawehea te \frac{1}{2}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te \frac{1}{4}. Nā, tāpiria te pūrua o te \frac{1}{4} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
y^{2}+\frac{1}{2}y+\frac{1}{16}=\frac{5}{2}+\frac{1}{16}
Pūruatia \frac{1}{4} mā te pūrua i te taurunga me te tauraro o te hautanga.
y^{2}+\frac{1}{2}y+\frac{1}{16}=\frac{41}{16}
Tāpiri \frac{5}{2} ki te \frac{1}{16} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(y+\frac{1}{4}\right)^{2}=\frac{41}{16}
Tauwehea y^{2}+\frac{1}{2}y+\frac{1}{16}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(y+\frac{1}{4}\right)^{2}}=\sqrt{\frac{41}{16}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
y+\frac{1}{4}=\frac{\sqrt{41}}{4} y+\frac{1}{4}=-\frac{\sqrt{41}}{4}
Whakarūnātia.
y=\frac{\sqrt{41}-1}{4} y=\frac{-\sqrt{41}-1}{4}
Me tango \frac{1}{4} mai i ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}