Tīpoka ki ngā ihirangi matua
Whakaoti mō y
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

2y^{2}=-2
Tangohia te 2 mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
y^{2}=\frac{-2}{2}
Whakawehea ngā taha e rua ki te 2.
y^{2}=-1
Whakawehea te -2 ki te 2, kia riro ko -1.
y=i y=-i
Kua oti te whārite te whakatau.
2y^{2}+2=0
Ko ngā tikanga tātai pūrua pēnei i tēnei nā, me te kīanga tau x^{2} engari kāore he kīanga tau x, ka taea tonu te whakaoti mā te whakamahi i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, ina tuhia ki te tānga ngahuru: ax^{2}+bx+c=0.
y=\frac{0±\sqrt{0^{2}-4\times 2\times 2}}{2\times 2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 2 mō a, 0 mō b, me 2 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{0±\sqrt{-4\times 2\times 2}}{2\times 2}
Pūrua 0.
y=\frac{0±\sqrt{-8\times 2}}{2\times 2}
Whakareatia -4 ki te 2.
y=\frac{0±\sqrt{-16}}{2\times 2}
Whakareatia -8 ki te 2.
y=\frac{0±4i}{2\times 2}
Tuhia te pūtakerua o te -16.
y=\frac{0±4i}{4}
Whakareatia 2 ki te 2.
y=i
Nā, me whakaoti te whārite y=\frac{0±4i}{4} ina he tāpiri te ±.
y=-i
Nā, me whakaoti te whārite y=\frac{0±4i}{4} ina he tango te ±.
y=i y=-i
Kua oti te whārite te whakatau.