Tauwehe
\left(2y-3\right)\left(y+8\right)
Aromātai
\left(2y-3\right)\left(y+8\right)
Graph
Tohaina
Kua tāruatia ki te papatopenga
a+b=13 ab=2\left(-24\right)=-48
Whakatauwehea te kīanga mā te whakarōpū. Tuatahi, me tuhi anō te kīanga hei 2y^{2}+ay+by-24. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
-1,48 -2,24 -3,16 -4,12 -6,8
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōrunga te a+b, he nui ake te uara pū o te tau tōrunga i tō te tōraro. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -48.
-1+48=47 -2+24=22 -3+16=13 -4+12=8 -6+8=2
Tātaihia te tapeke mō ia takirua.
a=-3 b=16
Ko te otinga te takirua ka hoatu i te tapeke 13.
\left(2y^{2}-3y\right)+\left(16y-24\right)
Tuhia anō te 2y^{2}+13y-24 hei \left(2y^{2}-3y\right)+\left(16y-24\right).
y\left(2y-3\right)+8\left(2y-3\right)
Tauwehea te y i te tuatahi me te 8 i te rōpū tuarua.
\left(2y-3\right)\left(y+8\right)
Whakatauwehea atu te kīanga pātahi 2y-3 mā te whakamahi i te āhuatanga tātai tohatoha.
2y^{2}+13y-24=0
Ka taea te huamaha pūrua te tauwehe mā te whakamahi i te huringa ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ina ko x_{1} me x_{2} ngā otinga o te whārite pūrua ax^{2}+bx+c=0.
y=\frac{-13±\sqrt{13^{2}-4\times 2\left(-24\right)}}{2\times 2}
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
y=\frac{-13±\sqrt{169-4\times 2\left(-24\right)}}{2\times 2}
Pūrua 13.
y=\frac{-13±\sqrt{169-8\left(-24\right)}}{2\times 2}
Whakareatia -4 ki te 2.
y=\frac{-13±\sqrt{169+192}}{2\times 2}
Whakareatia -8 ki te -24.
y=\frac{-13±\sqrt{361}}{2\times 2}
Tāpiri 169 ki te 192.
y=\frac{-13±19}{2\times 2}
Tuhia te pūtakerua o te 361.
y=\frac{-13±19}{4}
Whakareatia 2 ki te 2.
y=\frac{6}{4}
Nā, me whakaoti te whārite y=\frac{-13±19}{4} ina he tāpiri te ±. Tāpiri -13 ki te 19.
y=\frac{3}{2}
Whakahekea te hautanga \frac{6}{4} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
y=-\frac{32}{4}
Nā, me whakaoti te whārite y=\frac{-13±19}{4} ina he tango te ±. Tango 19 mai i -13.
y=-8
Whakawehe -32 ki te 4.
2y^{2}+13y-24=2\left(y-\frac{3}{2}\right)\left(y-\left(-8\right)\right)
Tauwehea te kīanga taketake mā te whakamahi i te ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Me whakakapi te \frac{3}{2} mō te x_{1} me te -8 mō te x_{2}.
2y^{2}+13y-24=2\left(y-\frac{3}{2}\right)\left(y+8\right)
Whakamāmātia ngā kīanga katoa o te āhua p-\left(-q\right) ki te p+q.
2y^{2}+13y-24=2\times \frac{2y-3}{2}\left(y+8\right)
Tango \frac{3}{2} mai i y mā te kimi i te tauraro pātahi me te tango i ngā taurunga, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
2y^{2}+13y-24=\left(2y-3\right)\left(y+8\right)
Whakakorea atu te tauwehe pūnoa nui rawa 2 i roto i te 2 me te 2.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}