Whakaoti mō x
x = -\frac{31}{10} = -3\frac{1}{10} = -3.1
Graph
Tohaina
Kua tāruatia ki te papatopenga
6x-18-2\left(2x+8\right)=12x-3
Whakareatia ngā taha e rua o te whārite ki te 3.
6x-18-4x-16=12x-3
Whakamahia te āhuatanga tohatoha hei whakarea te -2 ki te 2x+8.
2x-18-16=12x-3
Pahekotia te 6x me -4x, ka 2x.
2x-34=12x-3
Tangohia te 16 i te -18, ka -34.
2x-34-12x=-3
Tangohia te 12x mai i ngā taha e rua.
-10x-34=-3
Pahekotia te 2x me -12x, ka -10x.
-10x=-3+34
Me tāpiri te 34 ki ngā taha e rua.
-10x=31
Tāpirihia te -3 ki te 34, ka 31.
x=\frac{31}{-10}
Whakawehea ngā taha e rua ki te -10.
x=-\frac{31}{10}
Ka taea te hautanga \frac{31}{-10} te tuhi anō ko -\frac{31}{10} mā te tango i te tohu tōraro.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}