Whakaoti mō x, y
x=\frac{1}{6}\approx 0.166666667
y=\frac{2}{3}\approx 0.666666667
Graph
Tohaina
Kua tāruatia ki te papatopenga
y+2x=1
Whakaarohia te whārite tuarua. Me tāpiri te 2x ki ngā taha e rua.
2x-5y=-3,2x+y=1
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
2x-5y=-3
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
2x=5y-3
Me tāpiri 5y ki ngā taha e rua o te whārite.
x=\frac{1}{2}\left(5y-3\right)
Whakawehea ngā taha e rua ki te 2.
x=\frac{5}{2}y-\frac{3}{2}
Whakareatia \frac{1}{2} ki te 5y-3.
2\left(\frac{5}{2}y-\frac{3}{2}\right)+y=1
Whakakapia te \frac{5y-3}{2} mō te x ki tērā atu whārite, 2x+y=1.
5y-3+y=1
Whakareatia 2 ki te \frac{5y-3}{2}.
6y-3=1
Tāpiri 5y ki te y.
6y=4
Me tāpiri 3 ki ngā taha e rua o te whārite.
y=\frac{2}{3}
Whakawehea ngā taha e rua ki te 6.
x=\frac{5}{2}\times \frac{2}{3}-\frac{3}{2}
Whakaurua te \frac{2}{3} mō y ki x=\frac{5}{2}y-\frac{3}{2}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=\frac{5}{3}-\frac{3}{2}
Whakareatia \frac{5}{2} ki te \frac{2}{3} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=\frac{1}{6}
Tāpiri -\frac{3}{2} ki te \frac{5}{3} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=\frac{1}{6},y=\frac{2}{3}
Kua oti te pūnaha te whakatau.
y+2x=1
Whakaarohia te whārite tuarua. Me tāpiri te 2x ki ngā taha e rua.
2x-5y=-3,2x+y=1
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}2&-5\\2&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-3\\1\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}2&-5\\2&1\end{matrix}\right))\left(\begin{matrix}2&-5\\2&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-5\\2&1\end{matrix}\right))\left(\begin{matrix}-3\\1\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}2&-5\\2&1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-5\\2&1\end{matrix}\right))\left(\begin{matrix}-3\\1\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-5\\2&1\end{matrix}\right))\left(\begin{matrix}-3\\1\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2-\left(-5\times 2\right)}&-\frac{-5}{2-\left(-5\times 2\right)}\\-\frac{2}{2-\left(-5\times 2\right)}&\frac{2}{2-\left(-5\times 2\right)}\end{matrix}\right)\left(\begin{matrix}-3\\1\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{12}&\frac{5}{12}\\-\frac{1}{6}&\frac{1}{6}\end{matrix}\right)\left(\begin{matrix}-3\\1\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{12}\left(-3\right)+\frac{5}{12}\\-\frac{1}{6}\left(-3\right)+\frac{1}{6}\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{6}\\\frac{2}{3}\end{matrix}\right)
Mahia ngā tātaitanga.
x=\frac{1}{6},y=\frac{2}{3}
Tangohia ngā huānga poukapa x me y.
y+2x=1
Whakaarohia te whārite tuarua. Me tāpiri te 2x ki ngā taha e rua.
2x-5y=-3,2x+y=1
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
2x-2x-5y-y=-3-1
Me tango 2x+y=1 mai i 2x-5y=-3 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
-5y-y=-3-1
Tāpiri 2x ki te -2x. Ka whakakore atu ngā kupu 2x me -2x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-6y=-3-1
Tāpiri -5y ki te -y.
-6y=-4
Tāpiri -3 ki te -1.
y=\frac{2}{3}
Whakawehea ngā taha e rua ki te -6.
2x+\frac{2}{3}=1
Whakaurua te \frac{2}{3} mō y ki 2x+y=1. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
2x=\frac{1}{3}
Me tango \frac{2}{3} mai i ngā taha e rua o te whārite.
x=\frac{1}{6}
Whakawehea ngā taha e rua ki te 2.
x=\frac{1}{6},y=\frac{2}{3}
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}