Whakaoti mō x
x=4
x = \frac{8}{3} = 2\frac{2}{3} \approx 2.666666667
Graph
Tohaina
Kua tāruatia ki te papatopenga
\left(2x-5\right)^{2}=\left(\sqrt{x^{2}-7}\right)^{2}
Pūruatia ngā taha e rua o te whārite.
4x^{2}-20x+25=\left(\sqrt{x^{2}-7}\right)^{2}
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(2x-5\right)^{2}.
4x^{2}-20x+25=x^{2}-7
Tātaihia te \sqrt{x^{2}-7} mā te pū o 2, kia riro ko x^{2}-7.
4x^{2}-20x+25-x^{2}=-7
Tangohia te x^{2} mai i ngā taha e rua.
3x^{2}-20x+25=-7
Pahekotia te 4x^{2} me -x^{2}, ka 3x^{2}.
3x^{2}-20x+25+7=0
Me tāpiri te 7 ki ngā taha e rua.
3x^{2}-20x+32=0
Tāpirihia te 25 ki te 7, ka 32.
a+b=-20 ab=3\times 32=96
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei 3x^{2}+ax+bx+32. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
-1,-96 -2,-48 -3,-32 -4,-24 -6,-16 -8,-12
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōraro te a+b, he tōraro hoki a a me b. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua 96.
-1-96=-97 -2-48=-50 -3-32=-35 -4-24=-28 -6-16=-22 -8-12=-20
Tātaihia te tapeke mō ia takirua.
a=-12 b=-8
Ko te otinga te takirua ka hoatu i te tapeke -20.
\left(3x^{2}-12x\right)+\left(-8x+32\right)
Tuhia anō te 3x^{2}-20x+32 hei \left(3x^{2}-12x\right)+\left(-8x+32\right).
3x\left(x-4\right)-8\left(x-4\right)
Tauwehea te 3x i te tuatahi me te -8 i te rōpū tuarua.
\left(x-4\right)\left(3x-8\right)
Whakatauwehea atu te kīanga pātahi x-4 mā te whakamahi i te āhuatanga tātai tohatoha.
x=4 x=\frac{8}{3}
Hei kimi otinga whārite, me whakaoti te x-4=0 me te 3x-8=0.
2\times 4-5=\sqrt{4^{2}-7}
Whakakapia te 4 mō te x i te whārite 2x-5=\sqrt{x^{2}-7}.
3=3
Whakarūnātia. Ko te uara x=4 kua ngata te whārite.
2\times \frac{8}{3}-5=\sqrt{\left(\frac{8}{3}\right)^{2}-7}
Whakakapia te \frac{8}{3} mō te x i te whārite 2x-5=\sqrt{x^{2}-7}.
\frac{1}{3}=\frac{1}{3}
Whakarūnātia. Ko te uara x=\frac{8}{3} kua ngata te whārite.
x=4 x=\frac{8}{3}
Rārangihia ngā rongoā katoa o 2x-5=\sqrt{x^{2}-7}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}