Whakaoti mō x, y
x=-\frac{2}{13}\approx -0.153846154
y = \frac{42}{13} = 3\frac{3}{13} \approx 3.230769231
Graph
Tohaina
Kua tāruatia ki te papatopenga
2x-3y+10=0,5x-y+4=0
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
2x-3y+10=0
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
2x-3y=-10
Me tango 10 mai i ngā taha e rua o te whārite.
2x=3y-10
Me tāpiri 3y ki ngā taha e rua o te whārite.
x=\frac{1}{2}\left(3y-10\right)
Whakawehea ngā taha e rua ki te 2.
x=\frac{3}{2}y-5
Whakareatia \frac{1}{2} ki te 3y-10.
5\left(\frac{3}{2}y-5\right)-y+4=0
Whakakapia te \frac{3y}{2}-5 mō te x ki tērā atu whārite, 5x-y+4=0.
\frac{15}{2}y-25-y+4=0
Whakareatia 5 ki te \frac{3y}{2}-5.
\frac{13}{2}y-25+4=0
Tāpiri \frac{15y}{2} ki te -y.
\frac{13}{2}y-21=0
Tāpiri -25 ki te 4.
\frac{13}{2}y=21
Me tāpiri 21 ki ngā taha e rua o te whārite.
y=\frac{42}{13}
Whakawehea ngā taha e rua o te whārite ki te \frac{13}{2}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=\frac{3}{2}\times \frac{42}{13}-5
Whakaurua te \frac{42}{13} mō y ki x=\frac{3}{2}y-5. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=\frac{63}{13}-5
Whakareatia \frac{3}{2} ki te \frac{42}{13} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=-\frac{2}{13}
Tāpiri -5 ki te \frac{63}{13}.
x=-\frac{2}{13},y=\frac{42}{13}
Kua oti te pūnaha te whakatau.
2x-3y+10=0,5x-y+4=0
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}2&-3\\5&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-10\\-4\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}2&-3\\5&-1\end{matrix}\right))\left(\begin{matrix}2&-3\\5&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-3\\5&-1\end{matrix}\right))\left(\begin{matrix}-10\\-4\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}2&-3\\5&-1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-3\\5&-1\end{matrix}\right))\left(\begin{matrix}-10\\-4\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-3\\5&-1\end{matrix}\right))\left(\begin{matrix}-10\\-4\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{2\left(-1\right)-\left(-3\times 5\right)}&-\frac{-3}{2\left(-1\right)-\left(-3\times 5\right)}\\-\frac{5}{2\left(-1\right)-\left(-3\times 5\right)}&\frac{2}{2\left(-1\right)-\left(-3\times 5\right)}\end{matrix}\right)\left(\begin{matrix}-10\\-4\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{13}&\frac{3}{13}\\-\frac{5}{13}&\frac{2}{13}\end{matrix}\right)\left(\begin{matrix}-10\\-4\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{13}\left(-10\right)+\frac{3}{13}\left(-4\right)\\-\frac{5}{13}\left(-10\right)+\frac{2}{13}\left(-4\right)\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{13}\\\frac{42}{13}\end{matrix}\right)
Mahia ngā tātaitanga.
x=-\frac{2}{13},y=\frac{42}{13}
Tangohia ngā huānga poukapa x me y.
2x-3y+10=0,5x-y+4=0
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
5\times 2x+5\left(-3\right)y+5\times 10=0,2\times 5x+2\left(-1\right)y+2\times 4=0
Kia ōrite ai a 2x me 5x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 5 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 2.
10x-15y+50=0,10x-2y+8=0
Whakarūnātia.
10x-10x-15y+2y+50-8=0
Me tango 10x-2y+8=0 mai i 10x-15y+50=0 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
-15y+2y+50-8=0
Tāpiri 10x ki te -10x. Ka whakakore atu ngā kupu 10x me -10x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-13y+50-8=0
Tāpiri -15y ki te 2y.
-13y+42=0
Tāpiri 50 ki te -8.
-13y=-42
Me tango 42 mai i ngā taha e rua o te whārite.
y=\frac{42}{13}
Whakawehea ngā taha e rua ki te -13.
5x-\frac{42}{13}+4=0
Whakaurua te \frac{42}{13} mō y ki 5x-y+4=0. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
5x+\frac{10}{13}=0
Tāpiri -\frac{42}{13} ki te 4.
5x=-\frac{10}{13}
Me tango \frac{10}{13} mai i ngā taha e rua o te whārite.
x=-\frac{2}{13}
Whakawehea ngā taha e rua ki te 5.
x=-\frac{2}{13},y=\frac{42}{13}
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}