Whakaoti mō a
a=24-4b-2x
Whakaoti mō b
b=-\frac{a}{4}-\frac{x}{2}+6
Graph
Tohaina
Kua tāruatia ki te papatopenga
2x-5a+4b=-6a+24
Hei kimi i te tauaro o 5a-4b, kimihia te tauaro o ia taurangi.
2x-5a+4b+6a=24
Me tāpiri te 6a ki ngā taha e rua.
2x+a+4b=24
Pahekotia te -5a me 6a, ka a.
a+4b=24-2x
Tangohia te 2x mai i ngā taha e rua.
a=24-2x-4b
Tangohia te 4b mai i ngā taha e rua.
2x-5a+4b=-6a+24
Hei kimi i te tauaro o 5a-4b, kimihia te tauaro o ia taurangi.
-5a+4b=-6a+24-2x
Tangohia te 2x mai i ngā taha e rua.
4b=-6a+24-2x+5a
Me tāpiri te 5a ki ngā taha e rua.
4b=-a+24-2x
Pahekotia te -6a me 5a, ka -a.
4b=24-a-2x
He hanga arowhānui tō te whārite.
\frac{4b}{4}=\frac{24-a-2x}{4}
Whakawehea ngā taha e rua ki te 4.
b=\frac{24-a-2x}{4}
Mā te whakawehe ki te 4 ka wetekia te whakareanga ki te 4.
b=-\frac{a}{4}-\frac{x}{2}+6
Whakawehe -a+24-2x ki te 4.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}