Whakaoti mō x
x=3
Graph
Tohaina
Kua tāruatia ki te papatopenga
4x-\left(x+1\right)=x+1+4
Whakareatia ngā taha e rua o te whārite ki te 2.
4x-x-1=x+1+4
Hei kimi i te tauaro o x+1, kimihia te tauaro o ia taurangi.
3x-1=x+1+4
Pahekotia te 4x me -x, ka 3x.
3x-1=x+5
Tāpirihia te 1 ki te 4, ka 5.
3x-1-x=5
Tangohia te x mai i ngā taha e rua.
2x-1=5
Pahekotia te 3x me -x, ka 2x.
2x=5+1
Me tāpiri te 1 ki ngā taha e rua.
2x=6
Tāpirihia te 5 ki te 1, ka 6.
x=\frac{6}{2}
Whakawehea ngā taha e rua ki te 2.
x=3
Whakawehea te 6 ki te 2, kia riro ko 3.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}