Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

2x\left(x+3\right)-7=7\left(x+3\right)
Tē taea kia ōrite te tāupe x ki -3 nā te kore tautuhi i te whakawehenga mā te kore. Whakareatia ngā taha e rua o te whārite ki te x+3.
2x^{2}+6x-7=7\left(x+3\right)
Whakamahia te āhuatanga tohatoha hei whakarea te 2x ki te x+3.
2x^{2}+6x-7=7x+21
Whakamahia te āhuatanga tohatoha hei whakarea te 7 ki te x+3.
2x^{2}+6x-7-7x=21
Tangohia te 7x mai i ngā taha e rua.
2x^{2}-x-7=21
Pahekotia te 6x me -7x, ka -x.
2x^{2}-x-7-21=0
Tangohia te 21 mai i ngā taha e rua.
2x^{2}-x-28=0
Tangohia te 21 i te -7, ka -28.
x=\frac{-\left(-1\right)±\sqrt{1-4\times 2\left(-28\right)}}{2\times 2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 2 mō a, -1 mō b, me -28 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-1\right)±\sqrt{1-8\left(-28\right)}}{2\times 2}
Whakareatia -4 ki te 2.
x=\frac{-\left(-1\right)±\sqrt{1+224}}{2\times 2}
Whakareatia -8 ki te -28.
x=\frac{-\left(-1\right)±\sqrt{225}}{2\times 2}
Tāpiri 1 ki te 224.
x=\frac{-\left(-1\right)±15}{2\times 2}
Tuhia te pūtakerua o te 225.
x=\frac{1±15}{2\times 2}
Ko te tauaro o -1 ko 1.
x=\frac{1±15}{4}
Whakareatia 2 ki te 2.
x=\frac{16}{4}
Nā, me whakaoti te whārite x=\frac{1±15}{4} ina he tāpiri te ±. Tāpiri 1 ki te 15.
x=4
Whakawehe 16 ki te 4.
x=-\frac{14}{4}
Nā, me whakaoti te whārite x=\frac{1±15}{4} ina he tango te ±. Tango 15 mai i 1.
x=-\frac{7}{2}
Whakahekea te hautanga \frac{-14}{4} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
x=4 x=-\frac{7}{2}
Kua oti te whārite te whakatau.
2x\left(x+3\right)-7=7\left(x+3\right)
Tē taea kia ōrite te tāupe x ki -3 nā te kore tautuhi i te whakawehenga mā te kore. Whakareatia ngā taha e rua o te whārite ki te x+3.
2x^{2}+6x-7=7\left(x+3\right)
Whakamahia te āhuatanga tohatoha hei whakarea te 2x ki te x+3.
2x^{2}+6x-7=7x+21
Whakamahia te āhuatanga tohatoha hei whakarea te 7 ki te x+3.
2x^{2}+6x-7-7x=21
Tangohia te 7x mai i ngā taha e rua.
2x^{2}-x-7=21
Pahekotia te 6x me -7x, ka -x.
2x^{2}-x=21+7
Me tāpiri te 7 ki ngā taha e rua.
2x^{2}-x=28
Tāpirihia te 21 ki te 7, ka 28.
\frac{2x^{2}-x}{2}=\frac{28}{2}
Whakawehea ngā taha e rua ki te 2.
x^{2}-\frac{1}{2}x=\frac{28}{2}
Mā te whakawehe ki te 2 ka wetekia te whakareanga ki te 2.
x^{2}-\frac{1}{2}x=14
Whakawehe 28 ki te 2.
x^{2}-\frac{1}{2}x+\left(-\frac{1}{4}\right)^{2}=14+\left(-\frac{1}{4}\right)^{2}
Whakawehea te -\frac{1}{2}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{1}{4}. Nā, tāpiria te pūrua o te -\frac{1}{4} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-\frac{1}{2}x+\frac{1}{16}=14+\frac{1}{16}
Pūruatia -\frac{1}{4} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}-\frac{1}{2}x+\frac{1}{16}=\frac{225}{16}
Tāpiri 14 ki te \frac{1}{16}.
\left(x-\frac{1}{4}\right)^{2}=\frac{225}{16}
Tauwehea x^{2}-\frac{1}{2}x+\frac{1}{16}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{1}{4}\right)^{2}}=\sqrt{\frac{225}{16}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-\frac{1}{4}=\frac{15}{4} x-\frac{1}{4}=-\frac{15}{4}
Whakarūnātia.
x=4 x=-\frac{7}{2}
Me tāpiri \frac{1}{4} ki ngā taha e rua o te whārite.