Whakaoti mō x
x=-\frac{5}{13}\approx -0.384615385
Graph
Tohaina
Kua tāruatia ki te papatopenga
2x-\frac{1}{2}\left(x-\frac{1}{2}x-\frac{1}{2}\left(-1\right)\right)=\frac{2}{3}\left(x-1\right)
Whakamahia te āhuatanga tohatoha hei whakarea te -\frac{1}{2} ki te x-1.
2x-\frac{1}{2}\left(x-\frac{1}{2}x+\frac{1}{2}\right)=\frac{2}{3}\left(x-1\right)
Whakareatia te -\frac{1}{2} ki te -1, ka \frac{1}{2}.
2x-\frac{1}{2}\left(\frac{1}{2}x+\frac{1}{2}\right)=\frac{2}{3}\left(x-1\right)
Pahekotia te x me -\frac{1}{2}x, ka \frac{1}{2}x.
2x-\frac{1}{2}\times \frac{1}{2}x-\frac{1}{2}\times \frac{1}{2}=\frac{2}{3}\left(x-1\right)
Whakamahia te āhuatanga tohatoha hei whakarea te -\frac{1}{2} ki te \frac{1}{2}x+\frac{1}{2}.
2x+\frac{-1}{2\times 2}x-\frac{1}{2}\times \frac{1}{2}=\frac{2}{3}\left(x-1\right)
Me whakarea te -\frac{1}{2} ki te \frac{1}{2} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
2x+\frac{-1}{4}x-\frac{1}{2}\times \frac{1}{2}=\frac{2}{3}\left(x-1\right)
Mahia ngā whakarea i roto i te hautanga \frac{-1}{2\times 2}.
2x-\frac{1}{4}x-\frac{1}{2}\times \frac{1}{2}=\frac{2}{3}\left(x-1\right)
Ka taea te hautanga \frac{-1}{4} te tuhi anō ko -\frac{1}{4} mā te tango i te tohu tōraro.
2x-\frac{1}{4}x+\frac{-1}{2\times 2}=\frac{2}{3}\left(x-1\right)
Me whakarea te -\frac{1}{2} ki te \frac{1}{2} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
2x-\frac{1}{4}x+\frac{-1}{4}=\frac{2}{3}\left(x-1\right)
Mahia ngā whakarea i roto i te hautanga \frac{-1}{2\times 2}.
2x-\frac{1}{4}x-\frac{1}{4}=\frac{2}{3}\left(x-1\right)
Ka taea te hautanga \frac{-1}{4} te tuhi anō ko -\frac{1}{4} mā te tango i te tohu tōraro.
\frac{7}{4}x-\frac{1}{4}=\frac{2}{3}\left(x-1\right)
Pahekotia te 2x me -\frac{1}{4}x, ka \frac{7}{4}x.
\frac{7}{4}x-\frac{1}{4}=\frac{2}{3}x+\frac{2}{3}\left(-1\right)
Whakamahia te āhuatanga tohatoha hei whakarea te \frac{2}{3} ki te x-1.
\frac{7}{4}x-\frac{1}{4}=\frac{2}{3}x-\frac{2}{3}
Whakareatia te \frac{2}{3} ki te -1, ka -\frac{2}{3}.
\frac{7}{4}x-\frac{1}{4}-\frac{2}{3}x=-\frac{2}{3}
Tangohia te \frac{2}{3}x mai i ngā taha e rua.
\frac{13}{12}x-\frac{1}{4}=-\frac{2}{3}
Pahekotia te \frac{7}{4}x me -\frac{2}{3}x, ka \frac{13}{12}x.
\frac{13}{12}x=-\frac{2}{3}+\frac{1}{4}
Me tāpiri te \frac{1}{4} ki ngā taha e rua.
\frac{13}{12}x=-\frac{8}{12}+\frac{3}{12}
Ko te maha noa iti rawa atu o 3 me 4 ko 12. Me tahuri -\frac{2}{3} me \frac{1}{4} ki te hautau me te tautūnga 12.
\frac{13}{12}x=\frac{-8+3}{12}
Tā te mea he rite te tauraro o -\frac{8}{12} me \frac{3}{12}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{13}{12}x=-\frac{5}{12}
Tāpirihia te -8 ki te 3, ka -5.
x=-\frac{5}{12}\times \frac{12}{13}
Me whakarea ngā taha e rua ki te \frac{12}{13}, te tau utu o \frac{13}{12}.
x=\frac{-5\times 12}{12\times 13}
Me whakarea te -\frac{5}{12} ki te \frac{12}{13} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
x=\frac{-5}{13}
Me whakakore tahi te 12 i te taurunga me te tauraro.
x=-\frac{5}{13}
Ka taea te hautanga \frac{-5}{13} te tuhi anō ko -\frac{5}{13} mā te tango i te tohu tōraro.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}