Whakaoti mō x
x=-1
x=3
Graph
Tohaina
Kua tāruatia ki te papatopenga
2x^{2}-4x=6
Whakamahia te āhuatanga tohatoha hei whakarea te 2x ki te x-2.
2x^{2}-4x-6=0
Tangohia te 6 mai i ngā taha e rua.
x=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}-4\times 2\left(-6\right)}}{2\times 2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 2 mō a, -4 mō b, me -6 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-4\right)±\sqrt{16-4\times 2\left(-6\right)}}{2\times 2}
Pūrua -4.
x=\frac{-\left(-4\right)±\sqrt{16-8\left(-6\right)}}{2\times 2}
Whakareatia -4 ki te 2.
x=\frac{-\left(-4\right)±\sqrt{16+48}}{2\times 2}
Whakareatia -8 ki te -6.
x=\frac{-\left(-4\right)±\sqrt{64}}{2\times 2}
Tāpiri 16 ki te 48.
x=\frac{-\left(-4\right)±8}{2\times 2}
Tuhia te pūtakerua o te 64.
x=\frac{4±8}{2\times 2}
Ko te tauaro o -4 ko 4.
x=\frac{4±8}{4}
Whakareatia 2 ki te 2.
x=\frac{12}{4}
Nā, me whakaoti te whārite x=\frac{4±8}{4} ina he tāpiri te ±. Tāpiri 4 ki te 8.
x=3
Whakawehe 12 ki te 4.
x=-\frac{4}{4}
Nā, me whakaoti te whārite x=\frac{4±8}{4} ina he tango te ±. Tango 8 mai i 4.
x=-1
Whakawehe -4 ki te 4.
x=3 x=-1
Kua oti te whārite te whakatau.
2x^{2}-4x=6
Whakamahia te āhuatanga tohatoha hei whakarea te 2x ki te x-2.
\frac{2x^{2}-4x}{2}=\frac{6}{2}
Whakawehea ngā taha e rua ki te 2.
x^{2}+\left(-\frac{4}{2}\right)x=\frac{6}{2}
Mā te whakawehe ki te 2 ka wetekia te whakareanga ki te 2.
x^{2}-2x=\frac{6}{2}
Whakawehe -4 ki te 2.
x^{2}-2x=3
Whakawehe 6 ki te 2.
x^{2}-2x+1=3+1
Whakawehea te -2, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -1. Nā, tāpiria te pūrua o te -1 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-2x+1=4
Tāpiri 3 ki te 1.
\left(x-1\right)^{2}=4
Tauwehea x^{2}-2x+1. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-1\right)^{2}}=\sqrt{4}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-1=2 x-1=-2
Whakarūnātia.
x=3 x=-1
Me tāpiri 1 ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}