Whakaoti mō x
x=-4
x = \frac{3}{2} = 1\frac{1}{2} = 1.5
Graph
Tohaina
Kua tāruatia ki te papatopenga
2x^{2}+2x=3\left(4-x\right)
Whakamahia te āhuatanga tohatoha hei whakarea te 2x ki te x+1.
2x^{2}+2x=12-3x
Whakamahia te āhuatanga tohatoha hei whakarea te 3 ki te 4-x.
2x^{2}+2x-12=-3x
Tangohia te 12 mai i ngā taha e rua.
2x^{2}+2x-12+3x=0
Me tāpiri te 3x ki ngā taha e rua.
2x^{2}+5x-12=0
Pahekotia te 2x me 3x, ka 5x.
x=\frac{-5±\sqrt{5^{2}-4\times 2\left(-12\right)}}{2\times 2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 2 mō a, 5 mō b, me -12 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-5±\sqrt{25-4\times 2\left(-12\right)}}{2\times 2}
Pūrua 5.
x=\frac{-5±\sqrt{25-8\left(-12\right)}}{2\times 2}
Whakareatia -4 ki te 2.
x=\frac{-5±\sqrt{25+96}}{2\times 2}
Whakareatia -8 ki te -12.
x=\frac{-5±\sqrt{121}}{2\times 2}
Tāpiri 25 ki te 96.
x=\frac{-5±11}{2\times 2}
Tuhia te pūtakerua o te 121.
x=\frac{-5±11}{4}
Whakareatia 2 ki te 2.
x=\frac{6}{4}
Nā, me whakaoti te whārite x=\frac{-5±11}{4} ina he tāpiri te ±. Tāpiri -5 ki te 11.
x=\frac{3}{2}
Whakahekea te hautanga \frac{6}{4} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
x=-\frac{16}{4}
Nā, me whakaoti te whārite x=\frac{-5±11}{4} ina he tango te ±. Tango 11 mai i -5.
x=-4
Whakawehe -16 ki te 4.
x=\frac{3}{2} x=-4
Kua oti te whārite te whakatau.
2x^{2}+2x=3\left(4-x\right)
Whakamahia te āhuatanga tohatoha hei whakarea te 2x ki te x+1.
2x^{2}+2x=12-3x
Whakamahia te āhuatanga tohatoha hei whakarea te 3 ki te 4-x.
2x^{2}+2x+3x=12
Me tāpiri te 3x ki ngā taha e rua.
2x^{2}+5x=12
Pahekotia te 2x me 3x, ka 5x.
\frac{2x^{2}+5x}{2}=\frac{12}{2}
Whakawehea ngā taha e rua ki te 2.
x^{2}+\frac{5}{2}x=\frac{12}{2}
Mā te whakawehe ki te 2 ka wetekia te whakareanga ki te 2.
x^{2}+\frac{5}{2}x=6
Whakawehe 12 ki te 2.
x^{2}+\frac{5}{2}x+\left(\frac{5}{4}\right)^{2}=6+\left(\frac{5}{4}\right)^{2}
Whakawehea te \frac{5}{2}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te \frac{5}{4}. Nā, tāpiria te pūrua o te \frac{5}{4} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+\frac{5}{2}x+\frac{25}{16}=6+\frac{25}{16}
Pūruatia \frac{5}{4} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}+\frac{5}{2}x+\frac{25}{16}=\frac{121}{16}
Tāpiri 6 ki te \frac{25}{16}.
\left(x+\frac{5}{4}\right)^{2}=\frac{121}{16}
Tauwehea x^{2}+\frac{5}{2}x+\frac{25}{16}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{5}{4}\right)^{2}}=\sqrt{\frac{121}{16}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+\frac{5}{4}=\frac{11}{4} x+\frac{5}{4}=-\frac{11}{4}
Whakarūnātia.
x=\frac{3}{2} x=-4
Me tango \frac{5}{4} mai i ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}