Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

2x-2x^{2}+1-x<0
Whakamahia te āhuatanga tohatoha hei whakarea te 2x ki te 1-x.
x-2x^{2}+1<0
Pahekotia te 2x me -x, ka x.
-x+2x^{2}-1>0
Me whakarea te koreōrite ki te -1 kia tōrunga ai te tau whakarea o te pū tino teitei i x-2x^{2}+1. I te mea he tōraro a -1, ka huri te ahunga koreōrite.
-x+2x^{2}-1=0
Kia whakaotia te koreōrite, me tauwehe te taha mauī. Ka taea te huamaha pūrua te tauwehe mā te whakamahi i te huringa ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ina ko x_{1} me x_{2} ngā otinga o te whārite pūrua ax^{2}+bx+c=0.
x=\frac{-\left(-1\right)±\sqrt{\left(-1\right)^{2}-4\times 2\left(-1\right)}}{2\times 2}
Ka taea ngā whārite katoa o te momo ax^{2}+bx+c=0 te whakaoti mā te ture pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Whakakapia te 2 mō te a, te -1 mō te b, me te -1 mō te c i te ture pūrua.
x=\frac{1±3}{4}
Mahia ngā tātaitai.
x=1 x=-\frac{1}{2}
Whakaotia te whārite x=\frac{1±3}{4} ina he tōrunga te ±, ina he tōraro te ±.
2\left(x-1\right)\left(x+\frac{1}{2}\right)>0
Tuhia anō te koreōrite mā te whakamahi i ngā otinga i whiwhi.
x-1<0 x+\frac{1}{2}<0
Kia tōrunga te otinga, me tōraro tahi te x-1 me te x+\frac{1}{2}, me tōrunga tahi rānei. Whakaarohia te tauira ina he tōraro tahi te x-1 me te x+\frac{1}{2}.
x<-\frac{1}{2}
Te otinga e whakaea i ngā koreōrite e rua ko x<-\frac{1}{2}.
x+\frac{1}{2}>0 x-1>0
Whakaarohia te tauira ina he tōrunga tahi te x-1 me te x+\frac{1}{2}.
x>1
Te otinga e whakaea i ngā koreōrite e rua ko x>1.
x<-\frac{1}{2}\text{; }x>1
Ko te otinga whakamutunga ko te whakakotahi i ngā otinga kua whiwhi.