Whakaoti mō x
x=\sqrt{5}\approx 2.236067977
x=-\sqrt{5}\approx -2.236067977
x=3
x=\frac{1}{2}=0.5
Graph
Pātaitai
Polynomial
5 raruraru e ōrite ana ki:
2 x ^ { 4 } - 7 x ^ { 3 } - 7 x ^ { 2 } + 35 x - 15 = 0
Tohaina
Kua tāruatia ki te papatopenga
±\frac{15}{2},±15,±\frac{5}{2},±5,±\frac{3}{2},±3,±\frac{1}{2},±1
Tā te Rational Root Theorem, ko ngā pūtake whakahau katoa o tētahi pūrau kei te āhua o \frac{p}{q}, ina wehea e p te kīanga pūmau -15, ā, ka wehea e q te whakarea arahanga 2. Whakarārangitia ngā kaitono katoa \frac{p}{q}.
x=3
Kimihia tētahi pūtake pērā mā te whakamātau i ngā uara tau tōpū katoa, e tīmata ana i te mea iti rawa mā te uara pū. Mēnā kāore he pūtake tau tōpū e kitea, whakamātauria ngā hautanga.
2x^{3}-x^{2}-10x+5=0
Mā te whakatakotoranga Tauwehe, he tauwehe te x-k o te pūrau mō ia pūtake k. Whakawehea te 2x^{4}-7x^{3}-7x^{2}+35x-15 ki te x-3, kia riro ko 2x^{3}-x^{2}-10x+5. Whakaotihia te whārite ina ōrite te hua ki te 0.
±\frac{5}{2},±5,±\frac{1}{2},±1
Tā te Rational Root Theorem, ko ngā pūtake whakahau katoa o tētahi pūrau kei te āhua o \frac{p}{q}, ina wehea e p te kīanga pūmau 5, ā, ka wehea e q te whakarea arahanga 2. Whakarārangitia ngā kaitono katoa \frac{p}{q}.
x=\frac{1}{2}
Kimihia tētahi pūtake pērā mā te whakamātau i ngā uara tau tōpū katoa, e tīmata ana i te mea iti rawa mā te uara pū. Mēnā kāore he pūtake tau tōpū e kitea, whakamātauria ngā hautanga.
x^{2}-5=0
Mā te whakatakotoranga Tauwehe, he tauwehe te x-k o te pūrau mō ia pūtake k. Whakawehea te 2x^{3}-x^{2}-10x+5 ki te 2\left(x-\frac{1}{2}\right)=2x-1, kia riro ko x^{2}-5. Whakaotihia te whārite ina ōrite te hua ki te 0.
x=\frac{0±\sqrt{0^{2}-4\times 1\left(-5\right)}}{2}
Ka taea ngā whārite katoa o te momo ax^{2}+bx+c=0 te whakaoti mā te ture pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Whakakapia te 1 mō te a, te 0 mō te b, me te -5 mō te c i te ture pūrua.
x=\frac{0±2\sqrt{5}}{2}
Mahia ngā tātaitai.
x=-\sqrt{5} x=\sqrt{5}
Whakaotia te whārite x^{2}-5=0 ina he tōrunga te ±, ina he tōraro te ±.
x=3 x=\frac{1}{2} x=-\sqrt{5} x=\sqrt{5}
Rārangitia ngā otinga katoa i kitea.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}